高一物理力矩的定义和性质知识点
力学的知识点有很多,那么比较重要的有哪些呢?哪些又是考试中会考到的呢?以下是小编为您整理的关于高一物理力矩的定义和性质知识点的相关资料,希望对您有所帮助。
高一物理力矩的定义和性质知识点总结
定义:
力矩(torque):位矢(L)和力(F)的叉乘(M)。物理学上指使物体转动的力乘以到转轴的距离。
即:M=L×F。其中L是从转动轴到着力点的矢量, F是矢量力;力矩也是矢量。
力矩的量纲是力×距离;与能量的量纲相同。但是力矩通常用牛顿-米,而不是用焦耳作为单位。力矩的单位由力和力臂的单位决定。
力对物体产生转动作用的物理量。可分为力对轴的矩和力对点的矩。力对轴的矩是力对物体产生绕某一轴转动作用的物理量。
它是代数量,其大小等于力在垂直于该轴的平面上的分力同此分力作用线到该轴垂直距离的乘积;其正负号用以区别力矩的不同转向,按右手螺旋定则确定:以右手四指沿分力方向(X轴/Y轴),且掌心面向转轴(X轴/Y轴)而握拳,大拇指方向(Z轴)与该轴正向一致时取正号,反之则取负号。力对点的矩是力对物体产生绕某一点转动作用的物理量。
它是矢量,等于力作用点位置矢r和力矢F的矢量积。例如 ,用球铰链固定于O点的物体受力F作用,以r表示自O点至F作用点A的位置矢,r和F的夹角为a(见图)。物体在F作用下 ,绕垂直于r与F组成的平面并通过O点的轴转动 。转动作用的大小和转轴的方向取决于F对O点的矩矢M,M=r×F ;M的大小为rFsina ,方向由右手定则确定 。力矩M 在过矩心O的直角坐标轴上的投影为 Mx 、My 、Mz 。可以证明 Mx 、My 、Mz 就是F对x ,y,z轴的矩。力矩的量纲为L^2MT^(-2),其国际制单位为N·m。
例如,3牛顿的力作用在离支点2米的杠杆上的力矩等于1牛顿的力作用在离支点6米的力矩,这里假设力与杠杆垂直。一般地,力矩可以用矢量叉积(注意:不是矢量点乘)定义:
其中r是从转动轴到力的矢量, F是矢量力。
注:力矩的单位是Nm⋅或kNm⋅。
力矩的性质:
1.力沿其作用线移动时,因为力的大小、方向和力臂均没有改变,所以,力矩不变。
2.相互平衡的两个力对同一点的矩的代数和等于零。
3.力F对点O的矩,不仅决定于力的大小,同时与矩心的位置有关。矩心的位置不同,力矩随之不同;
4.当力的大小为零或力臂为零时,则力矩为零;
单位
力矩的量纲是距离乘以力;依照国际单位制,力矩的单位是牛顿-米。虽然牛顿与米的次序,在数学上,是可以变换的。BIPM (国际重量测量局) 设定这次序应是牛顿-米,而不是米-牛顿。
依照国际单位制,能量与功量的单位是焦耳,定义为 1 牛顿-米。但是,焦耳不是力矩的单位。因为,能量是力点积距离的标量;而力矩是距离叉积力的伪矢量。当然,量纲相同并不尽是巧合;使 1 牛顿-米的力矩,作用一全转,需要恰巧 2*Pi 焦耳的能量。
事实上,力矩与能量的关系是能量和一个对数矢量2π[lnK]的乘积,即t=2πQ[lnK],[lnk]的方向垂直于作用平面。因此用焦耳做单位也不是错误的。做圆周运动时,K=e,因此使 1 牛顿-米的力矩,作用一全转,需要恰巧 2*Pi 焦耳的能量。
定义:力对物体的作用效应,除移动效应外,还有转动效应。
静力观念:当一个物体在静态平衡时,净作用力是零,对任何一点的净力矩也是零。关于二维空间,平衡的要求是:
x,y方向合力均为0,且合力矩为0.
动力观念:力矩是角动量随时间的导数,就像力是动量随时间的导数。刚体的角动量是转动惯量乘以角速度