高一数学必修一集合知识点

2017-04-21

集合(简称集)是数学中一个基本概念,它是集合论的研究对象,集合论的基本理论直到19世纪才被创立。以下是小编为您整理的关于高一数学必修一集合知识点的相关资料,希望对您有所帮助。

高一数学必修一集合知识点总结

一、集合及其表示

1、集合的含义:

“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

2、集合的表示

通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作 a∈A ,相反,d不属于集合A ,记作 dA。

有一些特殊的集合需要记忆:

非负整数集(即自然数集) N 正整数集 N*或 N+

整数集Z 有理数集Q 实数集R

集合的表示方法:列举法与描述法。

①列举法:{a,b,c……}

②描述法:将集合中的元素的公共属性描述出来。如{xR| x-3>2} ,{x| x-3>2},{(x,y)|y=x2+1}

③语言描述法:例:{不是直角三角形的三角形}

例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}

强调:描述法表示集合应注意集合的代表元素

A={(x,y)|y= x2+3x+2}与 B={y|y= x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

3、集合的三个特性

(1)无序性

指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

解: ,A=B

注意:该题有两组解。

(2)互异性

指集合中的元素不能重复,A={2,2}只能表示为{2}

(3)确定性

集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

二、集合间的基本关系

1.子集,A包含于B,记为: ,有两种可能

(1)A是B的一部分,

(2)A与B是同一集合,A=B,A、B两集合中元素都相同。

反之: 集合A不包含于集合B,记作 。

如:集合A={1,2,3 },B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为 , ,B=C。A是C的子集,同时A也是C的真子集。

2.真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A)

3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的子集。

4、有n个元素的集合,含有2n个子集,2n -1个真子集,含有2n -2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

例:集合 共有 个子集。(13年高考第4题,简单)

练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

解析:

集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。

集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。

此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。一定要养成自己的逻辑习惯。如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。

三、交集、并集、补集

这个是高考的重点,但是一般题目较简单。

1.交集:

由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.

如集合A={1,2,3},集合B={2,3,4},则A∩B={2,3}。

例:已知集合 则 (11年高考第1题,简单)

练习:

(2014北京)已知集合 ,则 ( )

答案:C

解析: ,所以 {0,2}

2、并集

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.

如集合A={1,2,3},集合B={2,3,4},则A∪B={1,2,3,4}.

例:已知集合 , ,则 .(12年高考第1题,简单)

答案:{1,2,4,6}

3、全集与补集

(1)补集:设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CSA 即 CSA ={x  xS且 xA}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

更多相关阅读

最新发布的文章