北师大版小学五年级下册数学教案长方体

2017-05-27

长方体和正方体是小学五年级数学里常考的一个知识点,关于小学五年级下册数学教案怎么做呢?下面小编为你整理了北师大版小学五年级下册数学教案,希望对你有帮助。

五年级下册数学教案《长方体和正方体的认识》

教学目标:

1.掌握长方体和正方体的特征,认识它们之间的关系。

2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。

3.渗透事物是相互联系,发展变化的辩证唯物主义观点。

教学重点:

1.长方体和正方体的特征;

2.立体图形的识图。

教学难点:

1.长方体和正方体的特征;

2.立体图形的识图。

教具准备:

教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;动画。 学具:长方体和正方体纸盒。

教学设计:

一、复习准备

1.请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;老师明确:这些图形都在一个平面上,叫做平面图形。

2.教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。 教师提问:这些物体的各部分都在一个面上吗?(不是) 教师明确:这些物体的各部分不在一个面上,它们都是立体图形。

3.引入:今天这节课我们要进一步认识长方体有什么特征。

教师板书:长方体的认识

二、学习新课

(一)长方体的特征

1.请同学取出自己准备的长方体。 教师提问:请用手摸一摸长方体是由什么围成的? 请用手摸一摸两个面相交处有什么? 请摸一模三条棱相交处有什么?

教师板书:面、棱、顶点

2.参考讨论提纲来研究长方体的特征。

【演示动画“长方体的特征”】

讨论提纲:

①长方体有几个面?面的位置和大小有什么关系?

②长方体有多少条棱?棱的位置、长短有什么关系?

③长方体有多少个顶点?

教师板书:长方体:

面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。

棱:12条,相对的4条棱长度相等。

顶点:8个。

教师:请完整地说一说长方体的特征。

3.比较立体图形与平面图形的区别。

老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢? 请观察,你能看到几个面?哪几个面? 你能看见几条棱?哪几条棱?

教师介绍长方体的画法: 看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。

4.出示长方体框架观察。

教师提问:框架上的12条棱可以分几组?怎样分? 相交于一个顶点的三条棱长度相等吗?

教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

(二)正方体特征

1.【演示动画“正方体的特征”】

教师提问:看一看新得到的长方体与原来长方体比较有什么变化? (长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)

2.对照长方体的特征学生自己研究正方体的特征。 学生讨论、归纳后,

教师板书:正方体:

面:6个完全相同的正方形。

棱:12条棱长度都相等。

顶:8个。

3.学生讨论比较长方体和正方体的特征。

相同点:面、棱、顶点的数量上都相同;

不同点:在面的形状、面积、棱的长度方面不相同。

教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。

五年级下册数学教案《长方体的体积》

学习目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长×宽×高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=a•a•a=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=7×4×3=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页“做一做”第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计:

长方体和正方体的体积

长方体的体积=长×宽×高

V=abh

正方体体积=棱长×棱长×棱长

V=a•a•a=a3

五年级下册数学教案《长方体和正方体的表面积》

学习目标:

1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。

2.会用求长方体和正方体表面积的方法解决生活中的简单问题。

3.培养学生分析能力,发展学生的空间概念。

教学重点:

掌握长方体和正方体表面积的计算方法。

教学难点:

会用求长方体和正方体表面积的方法解决生活中的简单问题

教具运用:

长方体、正方体纸盒,剪刀,投影仪

教学过程:

一、复习导入

1.什么是长方体的长、宽、高?什么是正方体的棱长?

2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。

二、新课讲授

1.教学长方体和正方体表面积的概念。

(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。

师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。

(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。

(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?

观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。

2.学习长方体和正方体表面积的计算方法。

(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?

(2)出示教材第24页例1。

理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)

先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。

(3)尝试独立解答。

(4)集体交流反馈。

老师根据学生的解题思路进行板书。

方法一:长方体的表面积=6个面的面积和

0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)

方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积

0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)

方法三:(上面的面积+前面的面积+左面的面积)×2

(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)

(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?

(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。

三、课堂作业

1. 完成教材第23页“做一做”。

2.完成教材第24页“做一做”。

3.完成教材第25~26页练习六第1、2、3、4、6、7题。

四、课堂小结

今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?

猜你感兴趣:

1.北师大版小学五年级下册数学教案

2.最新北师大版五年级数学下册教案

3.北师版五年级数学下册教案

4.北师大五年级数学下册教案

5.北师大小学四年级下册数学教案

6.北师大版七年级下册数学教案

7.北师大版三年级下册数学教案

更多相关阅读

最新发布的文章