北师大七年级数学教材分析
相关话题
对数学教材进行一个分析,能够让你更好的进行教学。下面是小编整理的北师大七年级数学教材分析以供大家学习参考。
北师大七年级数学教材分析(一)
一、教材总体思路分析
1.本学期学习的主要内容有:有理数及其运算、字母表示数、一元一次方程;丰富的图形世界、平面图形及其位置关系;生活中的数据、可能性。
在数与代数领域中,通过数系的拓展形成“有理数”的概念。由于负数的引入,自然地将有理数的“运算”及“运算律”提升为关注和学习的对象。字母表示数是“代数”的重要特征,方程是数学的核心概念之一。通过学习,使学生意识到对数学问题的讨论是在有理数范围内进行的,为后面无理数的发现及实数系统的建立埋下伏笔。
初中阶段的几何知识学习以平面几何为主。在《丰富的图形世界》中,从对三维空间实物的观察开始,充分利用学生丰富的背景经验,在实物、几何体、直观图与平面图形的相互表示与转换中提高对几何图形的知觉水平,发展空间观念。通过观察、操作、思考、交流积累数学经验,感受到学习平面图形的必要性和简单图形的基础性,体会基本图形是刻画现实世界的重要工具,学习用数学眼光观察世界,现实生活可以带来无穷无尽的直觉源泉。在《平面图形及其位置关系》中,突出对几何基本概念的理解及突出合情推理的作用。
《生活中的数据》通过实际问题的讨论,使学生体会数据的重要作用,理解数据的处理及其所表达的信息,发展数感和统计观念。在《可能性》一章中,初步认识不确定现象的特点,通过试验体会随机现象中隐含着规律性,初步形成随机观念。
2.教材设计与内容的组织有如下考虑。
(1)借助生活中的实例,不难体会到引入负数的必要性和形成有理数概念的合理性。数轴的建立给出了有理数的一种直观解释和表示形式,可以作为工具配合现实情境加深对有理数运算意义的理解。绝对值概念将有理数与非负数之间建立起对应关系,便于对正负数运算的规则作出清晰的表述,它的几何意义是有理数对应的点到原点的距离。有理数的运算,特别是乘、除法的规定,不属于因果性的解释,而是希望“正数的性质负数也有,……这是在因袭数性”(付种孙),是一种合乎理性的选择。教材中作了细致的处理,反映了认识的连续性和继承性。运算的训练还采用了游戏的方式(24点),并注意在后继学习中不断巩固与强化。
(2)在《丰富的图形世界中》中,学习几何对象不是从几何学的逻辑起点开始,而是顺应数学历史的进程,经历从具体到抽象,再由抽象上升到具体的过程。从现实世界实物的考察开始,舍弃次要因素,分解出简单几何体或基本图形,在分解与整合的过程中发展几何直觉和空间观念。不是提前学习立体几何,而是通过活动学习“数学化”。在第四章中,自然地陆续引入几何概念,通过操作发现简单平面图形的位置关系及基本性质,并采用符号语言进行表示。教材提供了大量动手的机会,再现由直观动作思维到直观表象思维的过程,为进一步向抽象(逻辑)思维阶段的发展作好必要的准备。
(3)统计学习的最终目标是发展学生的统计观念,而统计观念的形成不是自发的,也不是说教能解决的,需要让学生亲身参与到这样的活动过程中,在活动中感受到解决问题需要收集数据,需要表示数据、分析数据,并利用数据分析的结果做出恰当的判断。因此,整个教材中统计有关内容的设计,都力图让学生从实际问题出发,经历统计活动的全过程,如教科书提出“为了尽可能多的吸引学生参与,你会组织观看什么比赛”,“你们对学好数学有信心吗”等问题,以这些问题为驱动,带领学生从事统计活动,在活动获取相应的知识与方法,发展其能力。
概率学习的最终目标是发展学生的随机观念,随机观念有多个层次,因此,发展学生的随机观念不能一蹴而就的,需要经历一个漫长的过程。为此,本册仅仅定位于让学生感受现实世界中随机现象的普遍性,通过具体的实践活动感受到随机现象发生的可能性有大有小,至于具体如何刻画,则放到七年级下册研究。此外,对于随机性大小,也仅关注在实践活动中的感受,而不希望从理论上分析。不希望学生说,“这种情况有3种可能,那种情况只有2种可能,因此,这种情况发生的可能性大一些”,这样的描述,实际上已经基于“每种可能发生的可能性是完全一样的”,这已经是理论计算,也许你所举的案例中这样分析并不错,但如果学习概率之处,学生都是如此感受的,可能容易将这种(等可能)情况泛化,为后继学习增添不必要的麻烦。
二、教学实施中应注意的几个问题
1.关注学生对数学知识的理解
(1)关于有理数的运算,强调对运算意义的理解。对运算律的认识在自主探索的过程中获得。由于繁难的数字运算可以利用计算工具进行,运算技能的培养主要放在对运算律的理解和灵活运用上。鼓励算法多样化,因为不同的算法可能来自不同的理解或思维习惯,通过交流资源共享。
代数是表示、交流和问题解决的工具,符号是其核心。通过《字母表示数》的学习,让学生感受到用字母代替具体的数字使问题得到一般性的解决。进一步领会便于形式运算(如合并同类项)和对规律的探索与发现,对于方程的认识产生直接的影响。
(2)在《丰富的图形世界》一章中,表面看出似乎没有太多具体的知识点。事实上,一个空间图形可以通过其表面的展开与折叠。用平面去切截和三种视图来实现三维与二维图形相互转换。通过边做边想、边想边做培养学生的空间观念。通过动手操作可以把抽象对象简单化、直观化,同时还要启发与提示进行理性思考。如用平面截一个立方体,截面能够是一个七边形吗?在做中“想”,包括理性的分析和推理——为什么能够、或不能够。发展学生的空间观念和提高视觉思维能力及水平是本章主要的学习目标。
2.教学中要有准确的定位,提高学习的实效性
(1)在《一元一次方程》的学习中,学生首次正式接触方程的概念。“方程”无疑是数学最重要的概念之一。通过学习领会方程的意义和作用,特别是学习“用方程的观点”来分析和处理问题。有些问题可以用“算术方法”求解,需要对所列算式的意义能做出清楚的解释,往往需要较多的智力投入。方程的重点不仅仅在于求解的程序,还需要达到通过建立方程达到求解未知量的目的,其中的关键步骤是把未知量(用字母表示数)与已知量平等看待,寻求它们之间的一种结构性的等量关系并表示出来。方程的学习为增强数学应用意识提供了机会。
(2)积累数学活动经验、发展空间观念是《丰富的图形世界》这一章的教学目标。内容贴近学生的生活经验,容易引起学习兴趣,感受到数学就在自己身边,改善不良的数学印象。教学中应充分挖掘活动中的数学内涵,把兴趣引向数学主题上来。活动过程中,应引导学生思考一系列的数学问题,如在将一个正方体的表面展成一个平面图形的过程中,学生们可以遇到很多数学问题。
通常,数学问题或数学思考可以由生动有趣的情境引发出来,情境可以为数学理解提供经验支持,但应及时切入主题,避免长时间“打外围战”。我们应当首先抓准每节课的基本定位,如从不同方向看,主要目的是学习三种视图,学会空间图形与平面投影之间的相互表示,在此基础之上,再应当学生思考避免看问题的片面性。
借助信息技术制作的课件能对教学产生良好的效果,但应注意避免教学活动成为技术的展示课。
北师大七年级数学教材分析(二)
一、教材总体思路分析
1.本册书的主要内容有:一元一次不等式(组)、分解因式、分式;相似图形、证明(一);数据的收集与处理。
《一元一次不等式(组)》是在学习过一次方程、一次函数的基础上进行的,因此从不等式与函数、方程之间的内在联系,从数与形两方面进行整体性、概括性的思考,对本章的研究和理解提供了广阔空间。
分解因式是多项式乘法的逆运算,其主要作用是变换代数式的形式,而形式的变化也构成一种恒等关系和意义的解释,对二次方程及二次函数的研究也产生影响。
《相似图形》是图形全等内容的深化与发展,提供了综合运用各种研究图形方法的机会。图形相似是从现实生活中大量存在的相似现象中抽象出来的一种直观表述,书中只给出了相似多边形的定义,它是最为根本的。就图形而言,三角形可以算作最基本图形,但相似三角形的定义则是特殊的。由于全等三角形可以看成相似三角形的特例,因此相似三角形的性质与判定可以与全等三角形相应内容进行类比。通过学习,可以感到对三角形的研究是认识与把握多边形特性的基础(一般的多边形可以通过“三角剖分”而视为由若干个三角形构成的),直角三角形比三角形更基本。至于位似,则更多地表现为“放大”与“缩小”,从中可以引申出比例关系,或者说有利于学生理解比例的意义。
从《证明(一)》开始学习“证明”。以往对证明的理解几乎成了“几何”的同义语,本套教科书把什么是证明,怎样证明移向前台,更好地体现了数学的两重性。数学有两个侧面,作为创造过程中的数学,看起来像是一门试验性的归纳科学,另一方面数学是欧几里得式的严谨科学,更像是一门系统的演绎科学。这里,将学习的重心引向对数学证明本身的学习,而不仅仅是几何证明,应当说提高了对数学证明的学习要求。因此,本章关于证明的必要性、公理的意义、证明的含义等应当成为学习的重点。
《数据的收集与处理》,在上一册刻画数据平均水平的基础上,进一步提出刻画数据波动水平的几个量度,从而让学生更全面地把握数据的特征,同时提出数据收集的各种方法,感受样本估计总体的思想。
2.本册在教材设计与内容的组织上有如下考虑。
(1)在《一元一次不等式(组)》中,不等式是不等关系的一种数学表示,现实生活中又存在大量不等关系,让学生在丰富的实际背景中进行学习,这时应关注数学的“表示”和数学的“应用”。在求解不等式的活动中,关注不同知识内在的实质性联系,加深对方程、函数、不等式等知识数学含义的理解,通过它们之间的相互解释,形式的转化,加深对数学知识结构性的理解。本章增设了“一元一次不等式与一次函数”一节,第6节后设置了“读一读”(不等式表示的平面区域)增加深度和弹性。
(2)分解因式是对多项式的进一步认识。从运算角度,与多项式乘法互为逆运算;从恒等变形角度,是同一个式子的不同形式;从学习的角度,是一个从运算(过程)到对象(恒等关系)的转化。教材更关注对分解因式的意义、作用的理解,不在方法和技巧上过多耗费精力。不要求必须掌握“十字相乘法”,方程的求解可以利用二次三项式求根的办法得到一般性解决。
(3)《相似图形》是从现实世界中相似现象的观察与分析、概括与抽象开始的,符合学生认知规律,体现了数学化的进程。本章内容按“相似图形—相似多边形—相似三角形—相似多边形的性质”的次序展开,重要知识包括:线段的比、位似图形及位似中心与位似比。相似三角形是本章的核心知识。本章内容不要求严格的几何证明,重点放在对图形性质的探索、发现以及应用上。由于几何中视觉思维占主导地位,应特别关注几何直觉与合情推理能力的发展上。
(4)《证明(一)》
数学史家H•伊夫斯指出,历史上几何学的发现经历了三个阶段:无意识的几何学、科学的几何学和论证的几何学。通过对自然现象的观察、简单工艺劳作在无意中熟悉了大量几何概念和事实(如圆、角、平行线、三角形、距离以及两点间直线段最短);随后归纳出一系列几何事实,这些结论经反复实验或实践的验证,成为一种经验几何;对这些经验进行理性思考,提出“为什么”的质疑时,就出现了论证或演绎形式的几何学。这个发展过程说明了几何知识的经验来源,同时还应当认识到对于归纳得到的结果,不进行严格论证很容易产生纰漏,无法保证不出现理论上的错误。本章中“你能肯定吗?”就是为了理解证明的必要性而设置的,其重要性在于形成科学的态度和理性精神。
按《标准》要求,教材构建了一个“局部的公理体系”,从给定的公理(作为推理的起点和依据)及有关概念出发,通过逻辑推演重新证明了平行线和三角形有关的结论。从本章开始,相关内容的证明都应按规范形式书写。公理化方法只要求体会其基本思想。
(5)《数据的收集与处理》仍按照统计活动的顺序:数据的收集—表示—处理—决策,即按问题解决的过程展开。相关概念是在实际背景中自然地引申出来,利于理解也便于运用。教学中要充分利用正面和反面的实例以澄清模糊认识或误导。
二、教学中应注意的几个问题
1.关注学生对数学知识的理解
(1)注意一次方程、一次函数、一次不等式(组)概念上的差别,关注它们之间的内在联系和综合运用(如第一章第5节中的“做一做”和习题1.6中第2题)。
(2)在分式变形和运算中,适当时机提出分解因式的作用。分式方程中应领会转化为整式方程的思想方法,领会产生增根的原因及验根的必要性。分式方程部分还提供了学习“建模”的机会。
(3)重视对图形的探索活动,不仅可以发现几何事实,而且还能提示证明的线索和产生证明的方法(如添加辅助线、部分进行位移),直观猜测与证明相辅相成。
几何证明的必要性不仅是避免判断失误,还在于对知识之间逻辑关系的把握。逻辑论证是由数学的本质与特性所决定的。学习证明不局限于学会证明具体的命题,体现了一种科学理性精神。
2.教学中注意数学思想的渗透
(1)欧式几何诞生前的几百年间,人们已经发现了大量的几何事实,其中也不乏采用三段论或证明的命题。欧几里得的功绩不在于发现了新的重要的几何事实,而在于对这些几何事实进行逻辑重组。当时希腊人形成了一种观念:一个合乎逻辑的学科,是由一组在学科研究开始时由公认的原始命题出发,通过演绎推理而得到一系列命题。由演绎法进行论证时,任何命题必须由前面的一个或几个命题推导出来,前面的命题必须由更前面的一个或几个命题推导出来。由于不可能无限地追溯下去,同时又不能造成逻辑上的循环,所以必须确定一组可被公认的原始命题(公理),然后完全由演绎推理导出该系统的所有命题。原始命题及导出命题需要使用明确规定的专门术语,而术语也需要由另外一些术语来定义,由此必须确定一组基本术语(原始概念),并对它们的用法做出解释。“几何不只是数学的一个分支,而且是一种思维方式,它渗透到数学的所有分支……”(阿蒂亚)。
(2)通过统计活动使学生感受到:统计学更多是以归纳的方法对数据进行整理、分析和判断;数据既是真实的又带有随机性;数据处理可采用不同的方法,所选用的方法本身并无对错之分,重要的是能否依据实际情况来选择更加科学合理的办法;抽样是通过样本所提供的信息去推断总体的某些性质,抽样最关心的是能否客观地反映实际(总体)的状况。
北师大七年级数学教材分析(三)
本册教材总体介绍
学习内容牵涉到4个领域:数与代数,空间与图形,统计与概率,课题学习。
基本内容是突出发展的阶段性:所有的知识只是一个起步,不要求学生在刚刚学完相应的知识后就达到«标准»所提出的目标。
第一章 丰富的图形世界
编写意图——初步发展学生的空间观念
主要特点:提倡从操作到思考、想象的学习方式,
第二章 有理数及其运算
编写意图——帮助学生了解有理数产生的必要性,有理数的意义,能够从事有理数运算,体会“数的扩张”的一致性和特殊性,让学生能够从事有理数运算。
主要特点:突出有理数及其运算产生的背景和形成过程。
第三章 字母表示数
编写意图——帮助学生建立符号感,认识代数。
主要特点:代数式及其运算意义的建立,渗透函数思想,(通过数据转换器让学生领会和把握函数思想)
第四章 平面图形及其位置关系
编写意图——了解基本几何元素及其相互关系。
主要特点:关注知识与方法形成的过程。(比如:关注度量线段和角的大小的方法)
第五章 一元一次方程
编写意图——帮助学生认识方程的含义,掌握解方程的方法,了解应用方程解决问题的基本思路和过程。
主要特点:更注重突出建立方程模型的想法,体现“寻找等量关系”建立方程模型的意义。
第六章 生活中的数据
编写意图——帮助学生了解统计的意义,发展统计意识。
主要特点:在解决问题的过程中理解有关概念,统计过程。
第七章 可能性
编写意图——帮助学生了解随机现象,可能性大小(概率)的含义。
主要特点:突出实验概率的方法(不是从理论到理论,而是通过实验活动帮助学生体会概率的基本想法)