2016初三数学第二次月考试题
相关话题
初三暑假过去了,同学们要静下心来好好学习了,在即将到来的初三第二次月考,同学们要准备哪些数学月考试题来练习呢?下面是小编为大家带来的关于2016初三数学第二次月考试题,希望会给大家带来帮助。
2016初三数学第二次月考试题:
一、选择题(本大题共10小题,每小题4分,共40分)
1.下列形中,既是中心对称形又是轴对称形的是 ( )
2、下列方程中一定是关于 的一元二次方程是( )
3、△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC等于
A、30° B、45° C、60° D、75°
4、关于x的一元二次方程ax2-2x+1=0有两个不相等的实数根,则a的取值范围是
A、a<1且a≠ 0 B、a<-1 C、a>1 且a≠ 0 D、a>-1
5、下列说法中,①、平分弦的直径垂直于弦;②、直角所对的弦是直径;③、相等的弦所对的弧相等;④、等弧所对的弦相等;⑤、圆周角等于圆心角的一半;⑥、 两根之和为5,其中正确命题的个数为( )
A、0个 B、1个 C、2个 D、3个
6、一扇形的半径为24cm,若此扇形围成的圆锥的底面半径为10cm,那么这个扇形的面积为( )
7.一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出1个球,这个球是黄 球的概率 为( )
A.错误!未找到引用源。 B.错误!未找到引用源。 C.错误!未找到引用源。 D.错误!未找到引用源。
7、在同一坐标系中,直线 和抛物线 的象只可能是( )
8.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( )
A.168(1+x)2=108 B.168(1-x)2=108
C.168(1-2x)=108 D.168 (1-x2)=108
9、 ,在△ABC中, ,经过点C且与
边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的
最小值是( )
A、4. 8 B、4.75 C、5 D、
10、正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为y,AE为x,则y关于x的函数象大致是
二、填空题(共5个小题,每小题4分,共20分)
11、已知关于 的方程 的一个根是-1,则 = .
12、已知点M(2a-b,3)与点N(-6,a+b)关于原点中心对称,则a-b=
13 所示,已知AB=16m,半径 OA=10m,高度CD为 .
14 在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和中阴影部分的面积分别为
15抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标为
(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:
①当x>3时,y<0;②3a+b>0;③-1≤a≤-错误!未找到引用源。;④3≤n≤4中,正确的是
三、解下列方程(本大题共2小题,每小题8分,共16分)
16、解方程:
17、试证明无论X取何实数时,代数式2 x2 +4x+7的值一定是正数。
四、解答题(共2个题,每小题8分,共16分)
18、一工程甲队单独做2天后乙队单独做3天刚好完成。已知乙队单独完成这项任务比甲队单独完成多用两天,求甲乙队单独完成这项任务各需要多少天?
19、把球放在长方体纸 盒内,球的一部分露出盒外,其截面所示,已知EF=CD=16厘米,求球的半径。
五、解答题(每小题10分,本题共20分)
20 有两个可以自由转动的均匀转盘A,B都被分成了3等份,并在每一份内均标有数字,所示,规则如下:
① 分别转动转盘;②两个转盘停止后观察两个指针 所指份内的数字(若指针停在等份线上,那么重转一次,直到指针指向某 一份内为止).
(1)用列表法(或树状)分别求出“两个指针所指的数字都是方程x2-5x+6=0的解”的概率和“两个指针所指的数字都不是方程x2-5x+6=0的解”的概率;
(2)王磊和张浩想用这两个转盘作游戏,他们规定:若“两个指针所指的数字都是x2-5x+6=0的解”时,王磊得1分;若“两个指针所指的数字都不是x2-5x+6=0的解”时,张浩得3分,这个游戏公平吗?若认为不公平,请修改得分规定,使游戏对双方公平.
21AB为⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线
ED⊥AF,交AF的延长线于点D,交AB的延长线于点C
(1)求证:CD是⊙O的切线
(2)若CB=2,CE=4,求AB的长
六解答题(共两小题,每题12分 共24分)
22平行四边形 ABCD中,两条对角线交于O点,且AO、BO的长分别是关于 的方程
的根。
(1)当 为何值时,平行四边形 ABCD为矩形;
(2)当 为何值时,平行四边形ABCD周长为20的菱形。
23 已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接E G,CG.
(1)求证:EG=CG;
(2)将①中△BEF绕B点逆时针旋转45º,②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将①中△BEF绕B点旋转任意角度,③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
七解答题(共1题 14分)
26. (14分)二次函数y=ax2+bx+c的象交x轴于A(﹣1,0),B(2,0),交y
轴于C(0,﹣2),过A,C画直线.
(1)求二次函数的解 析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)若M为线段OB上一个动点,过点M作MN平行于y轴交抛 物线于点N
当点M运动到何处时,四边形ACNB的面积最大?
求 出此时点M的坐标及四边形ACNB面积的最大值.