电子商务相关毕业论文
随着以计算机网络为核心的信息技术的迅速发展,国际互联网在全球的应用和普及,一种崭新的商务模式——电子商务应运而生,并在全球发展和推广。下面是小编为大家整理的电子商务相关毕业论文,供大家参考。
电子商务相关毕业论文范文一:我国移动电子商务发展的特点与趋势
摘要:移动电子商务(E-commerce)是电子商务新的发展方向,有着十分广阔的市场前景。本文从我国移动商务快速发展的态势入手,着重分析我国移动电子商务的发展现状,特点和发展前景,提出了今后发展过程中的突出问题并对其发展趋势进行了简单预测。
论文关键词:移动电子商务,特点,发展趋势
一、中国移动商务快速发展的态势
近年来,移动通信在全球范围内迅猛发展,数字化和网络化已成为不可逆转的趋势。中国移动通信业经过多年的发展,在网络基础设施、用户规模和移动通信服务等方面都保持了快速发展的势头。移动用户从1999年的不足5000万猛增到2007年的4.7亿。根据工业和信息化部发布的最新数据显示:2008年8月底,我国移动电话用户数约为6200万人(如图1-1所示),截至2009年9月,全国固定电话用户减少1241.8万户,达3.28亿户,移动电话用户增加6140.6万户,首次突破7亿户,达到7.03亿户。中国已经成为名副其实的全球人数最多、规模最大、资源最丰富的移动通信市场。
图1-1 我国移动电话用户统计表
从用户所在地区来看:东部占60.8%,中部为24.1%,西部为15.1%。从省份来看:广东省WAP活跃用户达到970万人,占全国的1/4。北京和上海的WAP活跃用户数量分别为170万和130万人。可以说我国WAP互联网已经走到了一个快速增长的临界点,无线互联网将迎来发展高潮。
随着手机的大规模普及,国内使用手机上网的网民也激增。据CNNIC今日发布的《第24次中国互联网络发展状况统计报告》披露,截止2009年6月,国内使用手机上网的网民达到1.55亿,半年内增长了32.1%。手机搜索与互联网搜索相比较,在以下两方面有着明显的优势:
第一,手机搜索的便利性更高。手机网民可以在任何时间、任何地点进行对内容的搜索,包括新闻、酒店等信息,而不用打开电脑和寻找网络接口。
第二,手机搜索可以让用户获得更丰富的信息和更好的应用体验。手机不但可以作为手机搜索的终端载体,同时又支持GPS定位(至少可以利用GPRS定位),类似的手机自身应用功能,都将被很好地利用在手机搜索上。
虽然在用户数量规模上,手机搜索将有可能最终被手机音乐、手机电视等适合手机宽带上网的大众化应用所超越,但手机搜索所表现出的对用户生活需求的实际帮助很大,并且在手机的小屏幕上,用户依然需要用搜索来获取更多的音乐和视频等内容。所以说手机音乐等应用的快速发展,反而也会推动手机搜索的发展。
二、中国移动商务快速发展的特点
目前,移动商务进入以开发移动商务价值为特色的资源开发和价值开发阶段,进入2007年以来,移动商务的发展出现了实质性的变化。其最显著的特点是:
⑴开始走出了短信低俗化的围城。
⑵开始走出了小富即安的满足感。
⑶开始走出了一般性的模式探索。
⑷开始了商务模式的系统研发和价值开发的研究探索。
这一变化得到了敏锐的风险投资商的关注,理性思索和系统研发开始起步。短信是目前最为成熟的中国移动通信服务业务之一,而短信与企业应用系统相结合已经成为中国移动商务的一种低成本、快回报、易操作的实现模式。计世资讯(CCW Research)发现,在已为用户部署移动商务应用的SI/ISV中,有60.7%的SI/ISV为用户部署的移动商务是采用短信技术。
调查表明,移动商务应用的行业市场分布比较均衡,许多行业都存在对移动商务应用的需求。政府部门和制造、流通、金融行业是目前移动商务应用的主要行业市场,物流、流通、快速消费品等高流动性和服务性行业如餐饮业、旅行社等也都有广泛的市场需求。
另外,用户消费意识的提升是移动商务市场拓展的基本要素之一,移动商务和移动信息化整体解决方案在公安、交通、金融等行业应用领域的市场拓展步伐不断加快,并实现了由部分试点到全面启动的突破。其中,“手机银行”、“移动证券”、“警务通”、“集团彩铃”等移动商务服务已开始在一定程度上普及和推广。
管理软件移动应用、移动终端软件开发和移动商务解决方案提供与实施都为中国软件业提供了良好的发展机会。由于我国的管理软件是目前国内应用最为广泛和成熟的应用软件市场,实施管理系统的企业为了提供工作效率、降低成本,对管理软件的移动应用产生了明确的需求。短信与管理软件的结合就是一种典型的管理软件移动应用模式。
三、未来发展趋势的简单预测
从为用户提供可随时随地享用的方便灵活的服务,到将企业运用和数据扩展到今天不固定的工作人员,移动电子商务提供了一种增加收入,简化核心流程并降低成本的全新途径。面对这种新的电子商务发展模式“机遇与挑战”是并存的,特别是在西部欠发达地区人们的思想意识还有待于改变,适合中小企业与普通民众使用的发展模式还有待于进一步摸索,移动电子商务在为人们带来激动人心的无限商机的同时,也带来了与其相关固有的复杂性和风险,具体表现在以下几个方面。
(一)安全的保障
目前关于移动电子商务的安全性初步应用的各种数据表明:移动电子商务面临的最大障碍便是赢得客户的信任,一个安全漏洞很可能导致所有的努力都功亏一篑。因此,如何保护用户的合法信息(账户、密码等)不受侵犯,是一项迫切需要解决的问题。除此以外,我们还应该解决好电子支付系统,商品配送系统等安全问题。
(二)技术的实现
带宽问题与有线相比,对无线频谱和功率的限制使其带宽较小,带宽成本较高,同时分组交换的发展使得信道变为共享;时延较大;连接可靠性较低,超出覆盖区域时,服务则拒绝接入。所以服务提供商应优化网络带宽的使用,同时增加网络容量,以提供更加可靠的服务。
(三)增值应用的需求
尽管近年来移动运营商和应用服务商在网络安全、身份认证等方面作出了巨大努力,确保使用者能在任何地点、任何时间安全、及时、交互地进行安全接入信息与服务,降低了用户在移动商务中数据传输信息失真、非法篡改、抵赖等交易风险,提高无线交易的安全性。
但是,就目前的应用情况来看,移动电子商务的个人应用主要集中于获取信息、订票、炒股等,缺乏更多、更具吸引力的应用,这无疑将制约移动电子商务的发展。
而目前多数企业用户、政府以及大量行业用户的需求则是要“增值添效”。因为,相当多的企业和组织,已经具备一定的信息化应用基础,很多行业用户已经实现了OA、财务管理等方面的信息化,还有一些企业实现了ERP、CRM和SCM等方面的成功应用,这些应用为移动商务的实施奠定了坚实了基础。但是,这些单位又遇到和提出了大量需要集成的、整合的、多维沟通的、迅速传递的、动态进行的问题需要解决。
因此,这些企业和组织的需求,不再是一般化的需求,而是一种创新性需求;一种前瞻性需求;一种实践和应用对接型需求;一种延伸动态管理型需求。
移动商务是与商务活动参与主体最贴近的一类电子商务模式,以应用移动通讯技术和移动终端为特性。由于用户与移动终端的对应关系,通过与移动终端可以在第一时间准确地与对象进行沟通,使用户更多的脱离设备状态和网络环境的束缚,最大限度地驰骋于自由的商务空间,是传统电子商务的重要补充。尽管目前移动电子商务的开展还存在很多问题,但随着它的发展和飞快的普及,很快会成为未来电子商务的主战场。
参考文献:
1.骆念蓓.电子商务管理.对外经济贸易大学出版社. 2009年08月
2.陈申.大学生创业之旅——探秘全程电子商务.电子工业出版社 2009年09月
3.王有为/胥正川.移动商务原理与应用(移动商务师认证培训教材)清华大学出版社 2007年08月
4..贾玢/刘纪元.电子商务概论.北京交通大学出版社. 2009年11月
电子商务相关毕业论文范文二:电子商务中数据挖掘技术的应用研究
[摘要]随着电子商务的普及和数据挖掘技术的发展,将数据挖掘技术应用到电子商务中可以解决电子商务中数据量庞大的问题,从而获得真正有价值的信息。文章简要的介绍了电子商务以及数据挖掘的概念,并对电子商务中所使用到的数据挖掘技术进行了详细的分析。
论文关键词:电子商务,数据挖掘,聚类分析,关联规则挖掘
1引言
随着Internet的普及,电子商务得到了前所未有的发展,经销商和客户之间通过互联网进行交易,节省了大量的费用和时间。但是在电子商务中充斥着大量的数据,如何从这些大量的数据中挖掘出真正有价值的信息,帮助企业经销商制定更好的营销策略是电子商务急需解决的问题。数据挖掘,又称数据库中的知识发现(Knowledge Discovery in Database, KDD),也就是从大量的数据中挖掘出有用信息的一种技术。利用数据挖掘技术可以使经销商从大量的数据中挖掘出有用的信息帮助决策,从而在市场竞争中获得优势地位。
2电子商务概述
电子商务指交易当事人或参与人利用现代信息技术和计算机网络(主要是因特网)所进行的各类商业活动,包括货物贸易、服务贸易和知识产权贸易。“电子商务”中所包括的“现代信息技术”应涵盖各种使用电子技术为基础的通信方式;“商务”指不论是契约型还是非契约型的一切商务性质的关系所引起的种种事项。如果将“现代信息技术”看作一个子集,“商务”看作另一个子集,电子商务所涵盖的范围应当是这两个子集所形成的交集,即“电子商务”标题之下可能广泛涉及的因特网、内部网和电子数据交换在贸易方面的各种用途。
电子商务与传统商务相比有以下优点:(1)电子商务将传统的商务流程数字化、电子化,让传统的商务流程转化为电子流、信息流,突破了时间空间的局限,大大提高了商业运作的效率。(2)电子商务简化了企业与企业,企业与个人之间的流通环节,最大限度地降低了流通成本,能有效地提高企业在现代商业活动中的竞争力。(3)电子商务是基于互联网的一种商务活动,互联网本身具有开放性全球性特点,电子商务可为企业及个人提供丰富的信息资源,为企业创造更多商业机会。(4)电子商务对大型企业和中小企业都有利,因为大中型企业需要买卖交易活动多,实现电子商务能有效地进行管理和提高效率,对小企业同样有利,因为电子商务可以使企业以相近的成本进行网上交易,这样使中小企业可能拥有和大企业一样的流通渠道和信息资源,极大提高了中小企业的竞争力。(5)电子商务将大部分商务活动搬到网上进行,企业可以实行无纸化办公节省了开支。
3数据挖掘技术
数据挖掘(Data Mining,DM)技术是随着计算机的广泛应用和数据的大量积累而发展起来的。数据挖掘是从大量的数据中提取或“挖掘”知识,即发现其中隐含的,未知的,有意义的信息的过程,它又被称为“数据库中知识发现”(KDD),也有人把数据挖掘视为数据库中知识发现的一个基本步骤,知识发现过程由以下步骤组成:(1)数据清理(2)数据集成(3)数据选择(4)数据变换(5)数据挖掘(6)模式评估(7)知识表示。
从商业的角度定义,数据挖掘是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。利用功能强大的数据挖掘技术,可以使企业把数据转化为有用的信息帮助决策,从而在市场竞争中获得优势地位。数据挖掘与传统的数据分析的不同是在没有明确假设的前提下去挖掘信息、发现知识。数据挖掘所得到的信息应具有先前未知、有效和实用3个特征。
4数据挖掘在电子商务中的作用
数据挖掘技术之所以可以服务于电子商务,是因为它能够挖掘出活动过程中的潜在信息以指导电子商务活动。在电子商务中的作用有7个方面:(1)挖掘客户活动顾虑,针对性的在电子商务平台下提供“个性化”的服务。(2)可以在浏览电子商务网站的访问者中挖掘出潜在的客户。(3)通过电子商务访问者的活动信息的挖掘,可以更加深入的了解客户需求。(4)通过挖掘网上顾客的购买行为,可以帮助制定合理的产品策略和定价策略。(5)通过对商品访问情况和销售情况进行挖掘,可以帮助制定产品营销策略,优化促销活动。(6)优化电子商务网站的信息导航,方便客户浏览。(7)通过客户在网络上浏览时的拥塞记录发现网站的性能瓶颈,从而提高网站的稳定性,保证电子商务购物快速进行。
5电子商务中数据挖掘的技术与方法
电子商务中的数据挖掘过程一般包括3个主要的阶段:数据准备、数据挖掘、结果解释和评价。(1)数据准备又可分为数据选取和数据预处理两个步骤。数据选取的目的是确定发现任务的操作对象。即目标数据,是根据用户的需要从原始数据库中抽取的一组数据。数据预处理一般包括消除噪声、推导计算缺值数据、消除重复记录、完成数据类型转换以及对数据降维。(2)数据挖掘阶段首先要确定数据挖掘的目标和挖掘的知识类型。确定挖掘任务后,根据挖掘的知识类型选择合适的挖掘算法,最后实施数据挖掘操作,运用选定的挖掘算法从数据库中抽取所需的知识。(3)结果的解释和评价。数据挖掘阶段发现的知识,经过评估,可能存在冗余或无关的知识,这时需要将其剔除,也有可能知识不满足用户的需求,需要重复上述挖掘过程重新进行挖掘。另外,由于数据挖掘最终要面临用户,因此,还需要对所挖掘的知识进行解释,以一种用户易于理解的方式供用户所使用。
数据挖掘按照其挖掘任务主要包括分类和预测、聚类分析、关联规则挖掘,回归发现和序列模式发现等技术。在选择某种数据挖掘技术之前,首先要将需要解决的问题转化成正确的数据挖掘任务,然后根据挖掘的任务来选择使用哪些数据挖掘技术。在电子商务活动中,主要使用下面的一些数据挖掘技术。
5.1分类
分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型或分类函数,将数据库中的数据项映射到某个给定的类别。分类的主要方法有基于决策树模型的数据分类,贝叶斯分类算法,ID3算法和基于BP神经网络算法等。
假定现在我们有一个描述顾客属性的数据库,包括他们的姓名、年龄、收入、职业等,我们可以按照他们是否购买某种商品(例如,计算机)来进行分类。如果现在有新的顾客添加到数据库中,我想将新计算机的销售信息通知顾客,若将促销材料分发给数据库中的每个新顾客,如此可能会导致耗费较多的精力和物力。而若我们只给那些可能购买新计算机的顾客分发材料,可以在较大的程度上节省成本。为此,可以构造和使用分类模型。分类方法的特点是通过对示例数据库中的数据进行分析,已经建立了一个分类模型,然后利用分类模型对数据库中的其它记录进行分类。
5.2聚类分析
聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。聚类分析的方法是数据挖掘领域最为常见的技术之一。常用的聚类分析方法有:分割聚类方法,层次聚类方法,基于密度的聚类方法和高维稀疏聚类算法等。聚类分析方法与分类方法的不同之处是聚类事先对数据集的分布没有任何的了解。因此在聚集之后要有一个对业务很熟悉的人来解释这样聚集的意义。很多情况下一次聚集你得到的分类对你的业务来说可能并不好,这时你需要删除或增加变量以影响分类的方式,经过几次反复之后才能最终得到一个理想的结果。聚类分析方法在电子商务中的使用也极其广泛。其中一个典型的应用是帮助市场分析人员从客户基本库中发现不同的客户群,并且用购买模式来刻画不同客户群的特征。通过对聚类的客户特征的提取,把客户群分成更细的市场,提供针对性的服务。
5.3关联规则挖掘
关联规则是描述数据库中数据项之间所存在关系的规则,即根据一个事物中的某些项的出现可导出另一些项在同一事物中也出现,即隐藏在数据间的关联或相互关系,比如在一次购买活动中所买不同商品的相关性。在电子商务中,从大量商务事物记录中发现有趣的关联关系,可以帮助许多商务决策的制定。关联规则挖掘最初也是最典型的形式是购物篮分析。它通过发现顾客放入其购物篮中不同商品之间联系,分析顾客的购买习惯。例如,在同一次去超级市场,如果顾客购买牛奶,他也购买面包(包括购买什么类型的面包)的可能性有多大?这些信息可以帮助零售商有选择地经销和安排货架,引导销售。例如,将牛奶和面包尽可能放近一些,可以进一步刺激一次去商店同时购买这些商品。在电子商务中,由于Web服务器的日志文件记录了用户的访问记录,通过这些记录利用关联规则挖掘网上顾客购买产品的相关度,对某些品牌的喜好和忠诚,价格接受范围,以及包装要求等,挖掘的结果可以用来帮助管理者进行网站规划、确定商品的种类、价格和新产品的投入。
5.4序列模式分析
序列模式分析和关联规则挖掘相似,但侧重点在分析数据间的前后序列关系。它能发现数据库中形如在某一段时间内,顾客购买商品A,接着购买商品B,而后购买商品C,即序列A-B-C出现的频度较高的信息。序列模式分析的一个例子是“九个月以前购买奔腾PC的客户很可能在一个月内订购新的CPU芯片”。
6结束语
电子商务过程中的各种信息和数据是电子商务活动能够更好的进行的基础,通过选择合适的数据挖掘技术来挖掘电子商务中有价值的信息,从而使企业在激烈的市场竞争中做出正确的决策,保持有力的竞争优势。随着数据挖掘技术的不断发展,我们相信它在电子商务中的应用将促使其得到更快更高效的发展。
参考文献:
[1]姚淼.《数据挖掘在电子商务中的应用》.高校图书情报论坛.Mar.2009.Vol.8 No.1
[2]赵雁.张黎明.吕安.赵彦慧.《电子商务中的数据挖掘技术》.中国电子学会第十届青年学术年会论文集.2004.9
[3]杨青杰.胡明霞.《数据挖掘技术在电子商务中的应用研究》.商场现代化.2008年第16期
[4]韩家炜.《数据挖掘概念与技术》.机械工业出版社.2001
[5]扈闯.《谈如何在电子商务中使用数据挖掘技术》.大众文艺(理论).2004年第04期
电子商务相关毕业论文相关文章:
1.关于电子商务毕业论文精选
2.关于电子商务毕业论文精选范文
3.浅谈电子商务毕业论文参考
4.浅谈电子商务毕业论文范文
5.电子商务毕业论文范文精选