计算机操作系统发展史简介

2017-06-05

操作系统并不是与计算机硬件一起诞生的,它是在人们使用计算机的过程中,为了满足两大需求:提高资源利用率、增强计算机系统性能,伴随着计算机技术本身及其应用的日益发展,而逐步地形成和完善起来的。接下来是小编为大家收集的计算机操作系统发展史简介,希望能帮到大家。

计算机操作系统发展史简介

最初的电脑并没有操作系统,人们通过各种操作按钮来控制计算机,后来出现了汇编语言,操作人员通过有孔的纸带将程序输入电脑进行编译。这些将语言内置的电脑只能由操作人员自己编写程序来运行,不利于设备、程序的共用。为了解决这种问题,就出现了操作系统,这样就很好实现了程序的共用,以及对计算机硬件资源的管理。

操作系统技术的发展

手工操作(无操作系统)

1946年第一台计算机诞生--20世纪50年代中期,还未出现操作系统,计算机工作采用手工操作方式。

程序员将对应于程序和数据的已穿孔的纸带(或卡片)装入输入机,然后启动输入机把程序和数据输入计算机内存,接着通过控制台开关启动程序针对数据运行;计算完毕,打印机输出计算结果;用户取走结果并卸下纸带(或卡片)后,才让下一个用户上机。

手工操作方式两个特点:

(1)用户独占全机。不会出现因资源已被其他用户占用而等待的现象,但资源的利用率低。

(2)CPU 等待手工操作。CPU的利用不充分。 

20世纪50年代后期,出现人机矛盾:手工操作的慢速度和计算机的高速度之间形成了尖锐矛盾,手工操作方式已严重损害了系统资源的利用率(使资源利用率降为百分之几,甚至更低),不能容忍。唯一的解决办法:只有摆脱人的手工操作,实现作业的自动过渡。这样就出现了成批处理。

批处理系统

批处理系统:加载在计算机上的一个系统软件,在它的控制下,计算机能够自动地、成批地处理一个或多个用户的作业(这作业包括程序、数据和命令)。

联机批处理系统

首先出现的是联机批处理系统,即作业的输入/输出由CPU来处理。

主机与输入机之间增加一个存储设备——磁带,在运行于主机上的监督程序的自动控制下,计算机可自动完成:成批地把输入机上的用户作业读入磁带,依次把磁带上的用户作业读入主机内存并执行并把计算结果向输出机输出。完成了上一批作业后,监督程序又从输入机上输入另一批作业,保存在磁带上,并按上述步骤重复处理。

监督程序不停地处理各个作业,从而实现了作业到作业的自动转接,减少了作业建立时间和手工操作时间,有效克服了人机矛盾,提高了计算机的利用率。

但是,在作业输入和结果输出时,主机的高速CPU仍处于空闲状态,等待慢速的输入/输出设备完成工作: 主机处于“忙等”状态。

脱机批处理系统

为克服与缓解:高速主机与慢速外设的矛盾,提高CPU的利用率,又引入了脱机批处理系统,即输入/输出脱离主机控制。

这种方式的显著特征是:增加一台不与主机直接相连而专门用于与输入/输出设备打交道的卫星机。

其功能是:

(1)从输入机上读取用户作业并放到输入磁带上。

(2)从输出磁带上读取执行结果并传给输出机。

这样,主机不是直接与慢速的输入/输出设备打交道,而是与速度相对较快的磁带机发生关系,有效缓解了主机与设备的矛盾。主机与卫星机可并行工作,二者分工明确,可以充分发挥主机的高速计算能力。

脱机批处理系统:20世纪60年代应用十分广泛,它极大缓解了人机矛盾及主机与外设的矛盾。IBM-7090/7094:配备的监督程序就是脱机批处理系统,是现代操作系统的原型。不足:每次主机内存中仅存放一道作业,每当它运行期间发出输入/输出(I/O)请求后,高速的CPU便处于等待低速的I/O完成状态,致使CPU空闲。

为改善CPU的利用率,又引入了多道程序系统。

多道程序系统

多道程序设计技术

所谓多道程序设计技术,就是指允许多个程序同时进入内存并运行。即同时把多个程序放入内存,并允许它们交替在CPU中运行,它们共享系统中的各种硬、软件资源。当一道程序因I/O请求而暂停运行时,CPU便立即转去运行另一道程序。

单道程序的运行过程:

在A程序计算时,I/O空闲, A程序I/O操作时,CPU空闲(B程序也是同样);必须A工作完成后,B才能进入内存中开始工作,两者是串行的,全部完成共需时间=T1+T2。

多道程序的运行过程:

将A、B两道程序同时存放在内存中,它们在系统的控制下,可相互穿插、交替地在CPU上运行:当A程序因请求I/O操作而放弃CPU时,B程序就可占用CPU运行,这样 CPU不再空闲,而正进行A I/O操作的I/O设备也不空闲,显然,CPU和I/O设备都处于“忙”状态,大大提高了资源的利用率,从而也提高了系统的效率,A、B全部完成所需时间<<T1+T2。

多道程序设计技术不仅使CPU得到充分利用,同时改善I/O设备和内存的利用率,从而提高了整个系统的资源利用率和系统吞吐量(单位时间内处理作业(程序)的个数),最终提高了整个系统的效率。

单处理机系统中多道程序运行时的特点:

(1)多道:计算机内存中同时存放几道相互独立的程序;

(2)宏观上并行:同时进入系统的几道程序都处于运行过程中,即它们先后开始了各自的运行,但都未运行完毕;

(3)微观上串行:实际上,各道程序轮流地用CPU,并交替运行。

多道程序系统的出现,标志着操作系统渐趋成熟的阶段,先后出现了作业调度管理、处理机管理、存储器管理、外部设备管理、文件系统管理等功能。

多道批处理系统

20世纪60年代中期,在前述的批处理系统中,引入多道程序设计技术后形成多道批处理系统(简称:批处理系统)。

它有两个特点:

(1)多道:系统内可同时容纳多个作业。这些作业放在外存中,组成一个后备队列,系统按一定的调度原则每次从后备作业队列中选取一个或多个作业进入内存运行,运行作业结束、退出运行和后备作业进入运行均由系统自动实现,从而在系统中形成一个自动转接的、连续的作业流。

(2)成批:在系统运行过程中,不允许用户与其作业发生交互作用,即:作业一旦进入系统,用户就不能直接干预其作业的运行。

批处理系统的追求目标:提高系统资源利用率和系统吞吐量,以及作业流程的自动化。批处理系统的一个重要缺点:不提供人机交互能力,给用户使用计算机带来不便。

虽然用户独占全机资源,并且直接控制程序的运行,可以随时了解程序运行情况。但这种工作方式因独占全机造成资源效率极低。

一种新的追求目标:既能保证计算机效率,又能方便用户使用计算机。 20世纪60年代中期,计算机技术和软件技术的发展使这种追求成为可能。

分时系统

由于CPU速度不断提高和采用分时技术,一台计算机可同时连接多个用户终端,而每个用户可在自己的终端上联机使用计算机,好象自己独占机器一样。

分时技术:把处理机的运行时间分成很短的时间片,按时间片轮流把处理机分配给各联机作业使用。

若某个作业在分配给它的时间片内不能完成其计算,则该作业暂时中断,把处理机让给另一作业使用,等待下一轮时再继续其运行。由于计算机速度很快,作业运行轮转得很快,给每个用户的印象是,好象他独占了一台计算机。而每个用户可以通过自己的终端向系统发出各种操作控制命令,在充分的人机交互情况下,完成作业的运行。

具有上述特征的计算机系统称为分时系统,它允许多个用户同时联机使用计算机。 特点:

(1)多路性。若干个用户同时使用一台计算机。微观上看是各用户轮流使用计算机;宏观上看是各用户并行工作。

(2)交互性。用户可根据系统对请求的响应结果,进一步向系统提出新的请求。这种能使用户与系统进行人机对话的工作方式,明显地有别于批处理系统,因而,分时系统又被称为交互式系统。

(3)独立性。用户之间可以相互独立操作,互不干扰。系统保证各用户程序运行的完整性,不会发生相互混淆或破坏现象。

(4)及时性。系统可对用户的输入及时作出响应。分时系统性能的主要指标之一是响应时间,它是指:从终端发出命令到系统予以应答所需的时间。

分时系统的主要目标:对用户响应的及时性,即不至于用户等待每一个命令的处理时间过长。

分时系统可以同时接纳数十个甚至上百个用户,由于内存空间有限,往往采用对换(又称交换)方式的存储方法。即将未“轮到”的作业放入磁盘,一旦“轮到”,再将其调入内存;而时间片用完后,又将作业存回磁盘(俗称“滚进”、“滚出“法),使同一存储区域轮流为多个用户服务。

多用户分时系统是当今计算机操作系统中最普遍使用的一类操作系统。

实时系统

虽然多道批处理系统和分时系统能获得较令人满意的资源利用率和系统响应时间,但却不能满足实时控制与实时信息处理两个应用领域的需求。于是就产生了实时系统,即系统能够及时响应随机发生的外部事件,并在严格的时间范围内完成对该事件的处理。

实时系统在一个特定的应用中常作为一种控制设备来使用。

实时系统可分成两类:

(1)实时控制系统。当用于飞机飞行、导弹发射等的自动控制时,要求计算机能尽快处理测量系统测得的数据,及时地对飞机或导弹进行控制,或将有关信息通过显示终端提供给决策人员。当用于轧钢、石化等工业生产过程控制时,也要求计算机能及时处理由各类传感器送来的数据,然后控制相应的执行机构。

(2)实时信息处理系统。当用于预定飞机票、查询有关航班、航线、票价等事宜时,或当用于银行系统、情报检索系统时,都要求计算机能对终端设备发来的服务请求及时予以正确的回答。此类对响应及时性的要求稍弱于第一类。

实时操作系统的主要特点:

(1)及时响应。每一个信息接收、分析处理和发送的过程必须在严格的时间限制内完成。

(2)高可靠性。需采取冗余措施,双机系统前后台工作,也包括必要的保密措施等。

通用操作系统

操作系统的三种基本类型:多道批处理系统、分时系统、实时系统。

通用操作系统:具有多种类型操作特征的操作系统。可以同时兼有多道批处理、分时、实时处理的功能,或其中两种以上的功能。

例如:实时处理+批处理=实时批处理系统。首先保证优先处理实时任务,插空进行批处理作业。常把实时任务称为前台作业,批作业称为后台作业。

再如:批处理+分时处理=分时批处理系统。即:时间要求不强的作业放入“后台”(批处理)处理,需频繁交互的作业在“前台”(分时)处理,处理机优先运行“前台”作业。

从上世纪60年代中期,国际上开始研制一些大型的通用操作系统。这些系统试图达到功能齐全、可适应各种应用范围和操作方式变化多端的环境的目标。但是,这些系统过于复杂和庞大,不仅付出了巨大的代价,且在解决其可靠性、可维护性和可理解性方面都遇到很大的困难。

相比之下,UNIX操作系统却是一个例外。这是一个通用的多用户分时交互型的操作系统。它首先建立的是一个精干的核心,而其功能却足以与许多大型的操作系统相媲美,在核心层以外,可以支持庞大的软件系统。它很快得到应用和推广,并不断完善,对现代操作系统有着重大的影响。

至此,操作系统的基本概念、功能、基本结构和组成都已形成并渐趋完善。

操作系统的进一步发展

进入20世纪80年代,大规模集成电路工艺技术的飞跃发展,微处理机的出现和发展,掀起了计算机大发展大普及的浪潮。一方面迎来了个人计算机的时代,同时又向计算机网络、分布式处理、巨型计算机和智能化方向发展。于是,操作系统有了进一步的发展,如:个人计算机操作系统、网络操作系统、分布式操作系统等。

个人计算机操作系统

个人计算机上的操作系统是联机交互的单用户操作系统,它提供的联机交互功能与通用分时系统提供的功能很相似。

由于是个人专用,因此一些功能会简单得多。然而,由于个人计算机的应用普及,对于提供更方便友好的用户接口和丰富功能的文件系统的要求会愈来愈迫切。

网络操作系统

计算机网络:通过通信设施,将地理上分散的、具有自治功能的多个计算机系统互连起来,实现信息交换、资源共享、互操作和协作处理的系统。

网络操作系统:在原来各自计算机操作系统上,按照网络体系结构的各个协议标准增加网络管理模块,其中包括:通信、资源共享、系统安全和各种网络应用服务。

分布式操作系统

表面上看,分布式系统与计算机网络系统没有多大区别。分布式操作系统也是通过通信网络,将地理上分散的具有自治功能的数据处理系统或计算机系统互连起来,实现信息交换和资源共享,协作完成任务。——硬件连接相同。

但有如下一些明显的区别:

(1)分布式系统要求一个统一的操作系统,实现系统操作的统一性。

(2)分布式操作系统管理分布式系统中的所有资源,它负责全系统的资源分配和调度、任务划分、信息传输和控制协调工作,并为用户提供一个统一的界面。

(3)用户通过这一界面,实现所需要的操作和使用系统资源,至于操作定在哪一台计算机上执行,或使用哪台计算机的资源,则是操作系统完成的,用户不必知道,此谓:系统的透明性。

(4)分布式系统更强调分布式计算和处理,因此对于多机合作和系统重构、坚强性和容错能力有更高的要求,希望系统有:更短的响应时间、高吞吐量和高可靠性。

具体操作系统的发展

随着计算技术和大规模集成电路的发展,微型计算机迅速发展起来。从20世纪70年代中期开始出现了计算机操作系统。1976年,美国DIGITAL RESEARCH软件公司研制出8位的CP/M操作系统。这个系统允许用户通过控制台的键盘对系统进行控制和管理,其主要功能是对文件信息进行管理,以实现硬盘文件或其他设备文件的自动存取。此后出现的一些8位操作系统多采用CP/M结构。

DOS操作系统

计算机操作系统的发展经历了两个阶段。第一个阶段为单用户、单任务的操作系统,继CP/M操作系统之后,还出现了C-DOS、M-DOS、TRS-DOS、S-DOS和MS-DOS等磁盘操作系统。

其中值得一提的是MS-DOS,它是在IBM-PC及其兼容机上运行的操作系统,它起源于SCP86-DOS,是1980年基于8086微处理器而设计的单用户操作系统。后来,微软公司获得了该操作系统的专利权,配备在IBM-PC机上,并命名为PC-DOS。1981年,微软的MS-DOS 1.0版与IBM的PC面世,这是第一个实际应用的16位操作系统。微型计算机进入一个新的纪元。1987年,微软发布MS-DOS 3.3版本,是非常成熟可靠的DOS版本,微软取得个人操作系统的霸主地位。

从1981年问世至今,DOS经历了7次大的版本升级,从1.0版到现在的7.0版,不断地改进和完善。但是,DOS系统的单用户、单任务、字符界面和16位的大格局没有变化,因此它对于内存的管理也局限在640KB的范围内。

操作系统新时代

计算机操作系统发展的第二个阶段是多用户多道作业和分时系统。其典型代表有UNIX、XENIX、OS/2以及Windows操作系统。分时的多用户、多任务、树形结构的文件系统以及重定向和管道是UNIX的三大特点。

OS/2

OS/2采用图形界面,它本身是一个32位系统,不仅可以处理32位OS/2系统的应用软件,也可以运行16位DOS和Windows软件。它将多任务管理、图形窗口管理、通信管理和数据库管理融为一体。

Windows

Windows是Microsoft公司在1985年11月发布的第一代窗口式多任务系统,它使PC机开始进入了所谓的图形用户界面时代。Windows 1.x版是一个具有多窗口及多任务功能的版本,但由于当时的硬件平台为PC/XT,速度很慢,所以Windows 1.x版本并未十分流行。1987年底,Microsoft公司又推出了MS-Windows 2.x版,它具有窗口重叠功能,窗口大小也可以调整,并可把扩展内存和扩充内存作为磁盘高速缓存,从而提高了整台计算机的性能,此外它还提供了众多的应用程序。

1990年,Microsoft公司推出了Windows 3.0,它的功能进一步加强,具有强大的内存管理,且提供了数量相当多的Windows应用软件,因此成为386、486微机新的操作系统标准。随后,Windows发表3.1版,而且推出了相应的中文版。3.1版较之3.0版增加了一些新的功能,受到了用户欢迎,是当时最流行的Windows版本。1995年,Microsoft公司推出了Windows 95。在此之前的Windows都是由DOS引导的,也就是说它们还不是一个完全独立的系统,而Windows 95是一个完全独立的系统,并在很多方面做了进一步的改进,还集成了网络功能和即插即用功能,是一个全新的32位操作系统。1998年,Microsoft公司推出了Windows 95的改进版Windows 98,Windows 98的一个最大特点就是把微软的Internet浏览器技术整合到了Windows 95里面,使得访问Internet资源就像访问本地硬盘一样方便,从而更好地满足了人们越来越多的访问Internet资源的需要。Windows 98已经成为目前实际使用的主流操作系统。

从微软1985年推出Windows 1.0以来,Windows系统从最初运行在DOS下的Windows 3.x,到现在风靡全球的Windows 9x/Me/2000/NT/XP,几乎成为了操作系统的代名词。

UNIX

UNIX操作系统,是美国AT&T公司于1971年在PDP-11上运行的操作系统。具有多用户、多任务的特点,支持多种处理器架构,最早由肯·汤普逊(Kenneth Lane Thompson)、丹尼斯·里奇(Dennis MacAlistair Ritchie)和Douglas McIlroy于1969年在AT&T的贝尔实验室开发。

目前它的商标权由国际开放标准组织(The Open Group)所拥有。

UNIX系统自1969年踏入计算机世界以来已30多年。虽然目前市场上面临某种操作系统(如 Windows NT)强有力的竞争,但是它仍然是笔记本电脑、PC、PC服务器、中小型机、工作站、大巨型机及群集、SMP、MPP上全系列通用的操作系统,至少到目前为止还没有哪一种操作系统可以担此重任。而且以其为基础形成的开放系统标准(如 POSIX)也是迄今为止唯一的操作系统标准,即使是其竞争对手或者目前还尚存的专用硬件系统(某些公司的大中型机或专用硬件)上运行的操作系统,其界面也是遵循 POSIX或其它类 UNIX标准的。从此意义上讲,UNIX就不只是一种操作系统的专用名称,而成了当前开放系统的代名词。

UNIX系统的转折点是1972年到1974年,因UNIX用C语言写成,把可移植性当成主要的设计目标。1988年开放软件基金会成立后,UNIX经历了一个辉煌的历程。成千上万的应用软件在UNIX系统上开发并施用于几乎每个应用领域。UNIX从此成为世界上用途最广的通用操作系统。UNIX不仅大大推动了计算机系统及软件技术的发展,从某种意义上说,UNIX的发展对推动整个社会的进步也起了重要的作用。

Linux

Linux是目前全球最大的一个自由软件,它是一个可与UNIX和Windows相媲美的操作系统,具有完备的网络功能。Linux最初由芬兰人Linus Torvalds开发,其源程序在Internet网上公布以后,引起了全球电脑爱好者的开发热情,许多人下载该源程序并按自己的意愿完善某一方面的功能,再发回到网上,Linux也因此被雕琢成为一个全球最稳定的、最有发展前景的操作系统。

从发展前景上看,Linux取代UNIX和Windows还为时过早,但一个稳定性、灵活性和易用性都非常好的软件,肯定会得到越来越广泛的应用。

Mac OS

1984年,苹果发布了System 1,这是一个黑白界面的,也是世界上第一款成功的图形化用户界面操作系统。System 1含有桌面、窗口、图标、光标、菜单和卷动栏等项目。其中令如今的电脑用户最觉稚嫩而有趣的是创建一个新的文件夹的方法——磁盘中有一个Empty Folder(空文件夹),创建一个文件夹的方法就是把这个空文件夹改名;接着,系统就自动又出现了一个Empty Folder,这个空文件夹就可以用于再次创建新文件夹了。当时的苹果操作系统没有今天的AppleTalk网络协议、桌面图像、颜色、QuickTime等丰富多彩的应用程序,同时,文件夹中也不能嵌套文件夹。实际上,System 1中的文件夹是假的,所有的文件都直接放在根目录下,文件根据系统的一个表被对应在各自的文件夹中,文件夹的形式只是为了方便用户在桌面上操作文件罢了。

在随后的十几年风风雨雨中,苹果操作系统历经了System 1到6,到7.5.3的巨大变化,苹果操作系统从单调的黑白界面变成8色、16色、真彩色,在稳定性、应用程序数量、界面效果等各方面,苹果都在向人们展示着自己日益成熟和长大的笑脸。从7.6版开始,苹果操作系统更名为Mac OS,此后的Mac OS 8和Mac OS 9,直至Mac OS 9.2.2以及今天的Mac OS 10.3,采用的都是这种命名方式。

2000年1月,Mac OS X正式发布,之后则是10.1和10.2。苹果为Mac OS X投入了大量的热情和精力,而且也取得了初步的成功。2002年,苹果电脑公司的创建者之一,苹果公司现任执行总裁Steve Jobs亲自主持了一个仪式:将一个Mac OS 9的产品包装盒放到了一个棺材中,正式宣布Mac OS X时代的全面来临!

从苹果的操作系统进化史上来看,Mac OS Panther(以下简称Panther)似乎只是苹果操作系统一次常规性的升级,可是,事实果真如此吗?在下结论以前,先让我们一起来看一个事实:2003年的WWDC(苹果全球开发商大会),这一历来在5月中下旬举行的会议,因为要为开发商提供Panther Developer Preview(开发商预览版),而专门推迟到了6月!一个月的等待并没有让用户失望,在每年都令无数苹果迷期盼的Jobs主题演讲中,我们听到了比以往多得多的掌声。

2003年10月24日,Mac OS X 10.3正式上市;11月11日,苹果又迅速发布了Mac OS X 10.3的升级版本Mac OS X 10.3.1。或许在本文发表之际,Panther就可以升级到10.3.2了。苹果公司宣称:“Mac OS Panther拥有超过150种创新功能,让你感觉就像拥有一台全新的苹果电脑”。

看了“计算机操作系统发展史简介”还想看:

1.电脑操作系统介绍与发展历程

2.有关计算机操作系统及应用的论文

3.电脑的发展历程

4.计算机发展历史的四个阶段

5.以大学计算机操作系统为题的论文

更多相关阅读

最新发布的文章