六年级数学分数乘分数教学反思

2017-05-07

《分数乘分数》是六年级数学上册的课本内容。小编整理了六年级数学分数乘分数教学反思,欢迎阅读!

六年级数学分数乘分数教学反思范文1

分数乘法这一单元内容包括:分数乘法的意义和计算方法以及分数乘法的应用。内容不仅多并且较抽象,学生理解较难。

分数乘法的意义在整数乘法的基础上有了进一步的拓展和延伸。特别是对一个数乘分数的理解上是这一单元的重点和难点。利用图形使抽象的问题直观化,在本单元教学中就显得重要了。

数量关系的理解,要紧紧依托于图像的直观性,这就是我们通常理解的图形与数量的结 合。变抽象为直观,用直观的图示帮助学生理解抽象的文字表述,再逐步使学生脱离直观上升到抽象语句的规律性理解和掌握。例如在教学一个数乘分数的意义时,就要引导学生用图示的方式方法理解把一个数平均分成了几份,表示这样的几份,就是求这个数的几分之几是多少,反之求一个数的几分之几是多少,直接用乘法来列式即可。同时引导学生直观的感知到了积小于被乘数的道理。下一步教学计算时更是要借助图示来帮助理解等于几的道理。用图形表征让学生充分观察理解分数乘分数的这一比较复杂的计算过程。引导归纳得到一个规律性的结论:分子相乘做积的分子,分母相乘做积的分母,能约分的要先约分才比较简便。

分数乘法的应用,则要用画线段图的方式来帮助学生建立数量与分数之间的对应关系。 进一步使学生理解和明确分数乘法的应用就是对分数乘法意义的拓展和深化。

数学的理解是离不开图形的辅助的。图形和数量是数学学习的一对相互依附的对象。 要学好数学就要教师帮助学生建立用一定的符号、图形来翻译抽象的数学内涵,变深邃为简约,更有利于学生的深刻理解和掌握,为进一步的学习数学知识积累数学活动的经验吧。

在教学《分数乘法》时,我重点让学生掌握分数乘法的计算方法,坚持每天进行口算训练。对于求一个数的几分之几是多少的应用题,能联系一个数乘分数的意义进行教学,注重加强分析题目的数量关系,明确把谁看作单位"1",但也忽略了单位化聚的方法复习以及一些重点评讲。以后应从以下几点来加强日常教学。

1、在教学中多进行题组训练,突破难点,让学生充分感知提炼方法。

2、教学中要注意用线段图表示题目的条件和问题,这有利于学生弄清以谁为标准, 让学生用画图的方式强化理解一个分数的几分之几用乘法计算。

3、帮助学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。

4、加强单位化聚方法的复习,如 时=( )分 吨=( )千克。

六年级数学分数乘分数教学反思范文2

本节课《分数乘分数》是人教版六年级数学第二单元的内容,重点是巩固和进化理解分数乘法的意义,探索分数乘分数的计算法则。

在教学实践中我继续采用“数形结合”的数学方法,帮助学生达成以上的两个数学目标。对于课堂中的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个得教学过程分为三个层次:

(1)、引导学生通过用图形表示算式,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

(2)、以3/4×1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后在根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程是学生巩固分数乘法的意义,体会分数乘分数的计算过程。

(3)、学生运用数形结合的方法独立完成教材中的试一试,进一步达成以上目标,并为总结分数乘分数的计算方法积累认知。整体教学的效果很好。

由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘分数计算过程的探索中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较好。

学生在计算分数乘分数时能根据计算法则进行计算,但对于计算过程的约分,部分学生的约分意识不强,如3的倍数,7的倍数,甚至更大质数的倍数,学生不知道约分,使结果不是最简,还要加强训练。

六年级数学分数乘分数教学反思范文3

《分数乘分数》的教学重点是巩固理解分数乘法的意义,探索分数乘分数的计算算理与法则。

在教学实践中继续采用“数形结合”的数学方法,帮助学生达成以上两个教学目标。对于今天的“探究活动”没有直接放手,这是因为学生对“求一个数的几分之几是多少”的分数乘法意义的理解还不够深刻,因此在整个的教学过程分为三个层次:

一、 引导学生通过用图形表示分数的意义,再用算式表示图形,深化“求一个数的几分之几是多少”的分数乘法意义,感知分数乘分数的计算过程。

二、 以1/5*1/4为例,让学生先解释算式的意义,然后用图形表示这个意义,最后再根据图形表示出算式的计算过程,这样做的目的是通过“以形论数”和“以数表形”的过程让学生巩固分数乘法的意义,体会分数乘分数的计算过程。

三、 学生运用数形结合的方法独立完成教材中的“试一试”,进一步达成以上目标,并为总结分数乘分数的计算积累认知。可以说整体教学的效果还好。

通过今天的课,我对数形结合的思想有了更进一步的理解。由于分数乘法的意义和计算法则的道理比较抽象,学生理解起来不是很容易,所以利用图形使抽象的问题直观化,在本单元教学中就显得特别重要了。纵观教材,树形结合思想的渗透也有不同的层次,数形结合能帮助学生从具体问题中抽象出数学问题;在本学期的分数乘分数中是利用直观的几何图形,帮助学生理解分数乘分数的计算道理;接下来的分数乘法应用中,我们还将利用线段图帮助学生理解分数乘法应用的问题;使用的图形越来越简约体现了教材对数形结合思想渗透的一个过程。

数形结合的过程不是简单的抽象变为直观的过程,而是抽象变为直观之后,在从直观变为抽象的一个过程,也就是要将“以形论数”和“以数表形”两个方面有机的结合起来。只有完整的让学生经历数与形之间的“互动”,才能使他们感知“数形结合”,才能使他们能在解决问题时自觉地应用“数形结合”的方法。

更多相关阅读

最新发布的文章