六年级数学小知识
小学六年级的数学复习是学生对六年学习的一个总结,同时又是学生进入中学的一个过渡。那么你对六年级数学了解多少呢?以下是由小编整理关于六年级数学小知识的内容,希望大家喜欢!
六年级数学小知识
一、 数与代数
(一) 数的运算
第1周 定义新运算
定义新运算是指用一个符号和已知运算表达式表示一种新的运算。解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
第2、3、4、5周 简便运算
根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简、化难为易。
第24周 比较数的大小
一些较复杂的数或式子的值的大小比较,可以灵活运用基本的比较整数、小数、分数大小的方法,有时我们还可以结合题目的特征运用特殊的比较方法。
(二)代数初步
第9周 设数法解题
在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解。但仔细分析就会发现,题目中缺少的条件,对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,假设一个数代入(当然假设的这个数要尽量方便计算),然后进行解答。
第13周 代数法解题
有些数量关系比较复杂的分数应用题,用算术方法解答比较繁琐,甚至无法列出算式,这时我们可根据题中的等量关系列方程解答。
第38周 同余法解题
同余这个概念最初是由德国数学家高斯发明的。同余的定义是这样的:
两个整数a,b,如果它们除以同一自然数m所得的余数相同,则称a,b对于模m同余。记作:a≡b(mod m)。读作:a同余于b模m。
应用同余性质解题的关键是要在正确理解的基础上灵活运用同余性质。把求一个较大的数除以某数的余数问题转化为求一个较小的数除以这个数的余数,使复杂的题变简单,使困难的题变容易。
第40周 解不定方程
当方程的个数比方程中未知数的个数少时,我们就称这样的方程为不定方程。
解不定方程是一般要将原方程适当变形,把其中的一个未知数用另一个未知数来表示,然后在一定范围内试验求解。解题时要注意观察未知数前面系数的特点,尽量缩小未知数的取值范围,减少试验的次数。解答应用题时,要根据题中的限制条件取适当的值。
二、 图形与几何
第18、19、20周 面积计算
计算平面图形的面积时,我们要认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利地达到目的;在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题之间的关系;对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。
第27、28周 表面积、体积
小学阶段所学的立体图形主要有四种:长方形、正方形、圆柱体和圆锥体。从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式做适当的变形,养成“数与形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
解答立体图形的体积问题时,要注意以下几点:
(1)物体沉入水中,水面上升部分的体积等于物体的体积。把物体从水中取出,水面下降部分的体积等于物体的体积。这是物体全部浸没在水中的情况。如果物体不全部浸没在水中,那么排开水的体积就等于浸在水中的那部分物体的体积。
(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
(3)求一些不规则形体体积时,可以通过变形的方法求体积。
(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试。
三、 与分数、比、百分数有关的应用题
第6、7、8周 转化单位“1”
解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看做单位“1”,将已知条件进行转化,找出所求数量相当于单位“1”的几分之几,再列式解答。
第10、11周 假设法解题
假设法解题的思考方法是先通过假设改变题目的条件,然后再和已知条件配合推算。有些题目用假设法思考,能找到巧妙的解答思路。
第12周 倒推法解题
倒推法解题是从最后的结果出发,运用加和减、乘和除之间的互逆关系,从后往前一步一步地推算,直到找到最初的数据,这种方法又常被称为“还原法”。适合用倒推法解题的数学问题常满足以下条件:已知最后的结果和到达最后结果时的每一步具体过程。
第14、15周 比的应用
我们已经学过比的知识,都知道比与分数、除法有着密切的联系,比与分数能够互相转化。运用这种方法解决一些实际问题可以化难为易,化繁为简。