八年级数学下册分式的复习提纲
八年级数学下册复习提纲
分式
1. 分式定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。 分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
3.分式的通分和约分:关键先是分解因式
4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方法则: 分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减
混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1, 即 ;当n为正整数时, ( 正整数指数幂运算性质(请同学们自己复习)也可以推广到整数指数幂.
6. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。 解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。 解分式方程的步骤 :
(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 列方程应用题的步骤是什么? (1)审;(2)设;(3)列;(4)解;(5)答.
应用题有几种类型;基本公式是什么?基本上有五种:
(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.
(2)数字问题 在数字问题中要掌握十进制数的表示法.
(3)工程问题 基本公式:工作量=工时×工效.
(4)顺水逆水问题 v顺水=v静水+v水. v逆水=v静水-v水. 7.科学记数法:把一个数表示成 的形式(其中 ,n是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于10的n位整数时,其中10的指数是
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)