初二数学上册预习知识点

2017-06-05

八年级上册数学要学习什么内容?都说数学比较难,想要更好地提高自己的学习效率,同学们不妨提前预习。下面是由小编整理的初二数学上册预习知识点,仅供参考。

初二数学上册第二章预习知识点

一、实数的概念及分类

1、实数的分类

正有理数

有理数 零 有限小数和无限循环小数

实数 负有理数

正无理数

无理数 无限不循环小数

负无理数

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

(3)有特定结构的数,如0.1010010001…等;

(4)某些三角函数值,如sin60o等

二、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算

三、平方根、算术平方根和立方根

1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

表示方法:记作“”,读作根号a。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

表示方法:正数a的平方根记做“”,读作“正、负根号a”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a的平方根的运算,叫做开平方。

注意的双重非负性:

3、立方根

一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。

表示方法:记作

性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:,这说明三次根号内的负号可以移到根号外面。

四、实数大小的比较

1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a、b是实数,

(3)求商比较法:设a、b是两正实数,

(4)绝对值比较法:设a、b是两负实数,则。

(5)平方法:设a、b是两负实数,则。

五、算术平方根有关计算(二次根式)

1、含有二次根号“”;被开方数a必须是非负数。

2、性质:(1)

(2)

(3) ()

(4) ()

3、运算结果若含有“”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式;(3)分母中不能含有根号。

六、实数的运算

(1)六种运算:加、减、乘、除、乘方 、开方

(2)实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

更多相关阅读

最新发布的文章