高一数学必修1集合知识点
集合是高一数学中一个基本概念,那么集合在必修一课本中有什么知识点需要学习的呢?下面是小编给大家带来的高一数学必修1集合知识点,希望对你有帮助。
高一数学必修1集合知识点
1.集合的有关概念
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件
2)集合的表示方法:常用的有列举法、描述法和图文法
3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N*
2.子集、交集、并集、补集、空集、全集等概念
1)子集:若对x∈A都有x∈B,则A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )
3)交集:A∩B={x| x∈A且x∈B}
4)并集:A∪B={x| x∈A或x∈B}
5)补集:CUA={x| x A但x∈U}
3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:
4.有关子集的几个等价关系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
7.集合中的元素有三个特征:
1)确定性(集合中的元素必须是确定的)
2)互异性(集合中的元素互不相同。例如:集合A={1,a},则a不能等于1)
3)无序性(集合中的元素没有先后之分。)
高一数学必修1集合典型例题
1.用符号“∈”或“∉”填空
(1)22________R,22________{x|x<7};
(2)3________{x|x=n2+1,n∈N+};
(3)(1,1)________{y|y=x2};
(1,1)________{(x,y)|y=x2}.
【解析】 (1)22∈R,而22=8>7,
∴22∉{x|x<7}.
(2)∵n2+1=3,
∴n=±2∉N+,
∴3∉{x|x=n2+1,n∈N+}.
(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,
故(1,1)∉{y|y=x2}.
集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,
∴(1,1)∈{(x,y)|y=x2}.
【答案】 (1)∈ ∉ (2)∉ (3)∉ ∈
2.已知集合C={x|63-x∈Z,x∈N*},用列举法表示C=________.
【解析】 由题意知3-x=±1,±2,±3,±6,
∴x=0,-3,1,2,4,5,6,9.
又∵x∈N*,
∴C={1,2,4,5,6,9}.
【答案】 {1,2,4,5,6,9}
3.已知集合A={-2,4,x2-x},若6∈A,则x=________.
【解析】 由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.
【答案】 -2或3
高一数学必修1集合练习题
1.下列各组对象能构成集合的有( )
①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学
A.1个 B.2个
C.3个 D.4个
【解析】 ①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.
【答案】 A
2.小于2的自然数集用列举法可以表示为( )
A.{0,1,2} B.{1}
C.{0,1} D.{1,2}
【解析】 小于2的自然数为0,1,应选C.
【答案】 C
3.下列各组集合,表示相等集合的是( )
①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.
A.① B.②
C.③ D.以上都不对
【解析】 ①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.
【答案】 B
4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为( )
A.2 B.2或4
C.4 D.0
【解析】 若a=2,则6-a=6-2=4∈A,符合要求;
若a=4,则6-a=6-4=2∈A,符合要求;
若a=6,则6-a=6-6=0∉A,不符合要求.
∴a=2或a=4.
【答案】 B