二年级数学手抄报图片及内容

2017-05-13

手抄报的制作是写是画都可以,它还可以给孩子们关注生活的空间,给他们设计创意的体验。让二年级的同学动手制作数学手抄报,让他们开发创意的同时又能学习到数学知识。下面小编带给大家的是二年级数学手抄报图片,希望你们喜欢。

二年级数学手抄报图片欣赏

二年级数学手抄报图片1

二年级数学手抄报图片2

二年级数学手抄报图片3

二年级数学手抄报图片4

二年级数学手抄报图片5

二年级数学手抄报内容一:多少只动物

这是久违的奎贝尔教授.奎贝尔教授:“我又为你们想出一个问题.在我饲养的动物中,除了两只以外所有的动物都是狗,除了两只以外,所有的都是猫,除了两只以外所有的都是鹦鹉,我总共养了多少只动物?你想出来了吗?

奎贝尔教授只养了三只动物:一只狗,一只猫和一只鹦鹉。除了两只以外所有的都是狗,除了两只以外所有的都是猫,除了两只以外所有的都是鹦鹉。

如果你领悟到“所有”这个词可以指仅仅一只动物的话,头脑中就有了这个问题的答案。最简单的情况一只狗,一只猫,一只鹦鹉,既是其解。然而,把这个问题用代数形式来表示也是一次很好的练习。

令x,y,z分别为狗,猫,鹦鹉的只数,n为动物的总数,我们可以写出下列四个联立方程:

n=x+2

n=y+2

n=z+2

n=x+y+z

解此联立方程有许多标准方法。显然,根据前三个方程式,可得出x=y=z。由于3n=x+y+z+6减去第四个方程,得到n=3,因此x+2=3,所以x=1。全部答案可由x值求得。

由于动物只数通常是正整数(谁养的猫是用分数来表示只数的?),可以把奎贝尔教授的动物问题看作所谓刁番图问题的一个平凡例子。这是一个其方程解必须是整数的代数问题。一个刁番图方程有时无解,有时只有一个解,有时有不止一个或个数有限的解,有时有无穷多个解。下面是一个难度稍大的刁番图问题,同样也与联立方程和三种不同的动物有关。

一头母牛价格10元钱,一头猪价格3元钱,一头羊价格0.5元钱。一个农夫买了一百头牲口,每种至少买了一头,总共花了100元钱,问每种牲口买了多少头?

令x为母牛的头数,y为猪的头数,z为羊的头数,可以写下如下两个方程式:

10x+3y+z/2=100

x+y+z=100

把第一个方程中的各项都乘以2消去分数,再与第二个方程相减以便消去z,这样得到下列方程式:

19x+5y=100

x和y可能有那些整数值?一种解法是把系数最小的项放到方程的左边:5y=100-19x,把两边都除以5得到:

y=(100-19x)/5

再把100和19x除以5,将余数(如果有的话)和除数5写成分数的形式,结果为:

y=20-3x-4x/5

显然,表达式4x/5必须是整数,亦即x必须是5的倍数。5的最小倍数既是其自身,由此得出y的值为1,将x,y的值带入任何一个原方程,可得z等于94。如果x为任何比5更大的5的倍数,则y变为负数。所以,此题仅有一个解:5头母牛,一头猪和94头羊。你只要把这个问题中牲口的价钱改变一下,便可以学到许多初等刁番图分析的知识。例如,设母牛价钱为4元钱,猪的价钱为2元钱,羊的价钱为三分之一元钱,一个农夫准备花一百元钱买一百头牲口,并且每种牲口至少买一头,试问他每种牲口可以买多少头?关于这一问题,恰好有三种解。但是如果母牛价钱为5元钱,猪的价钱为2元钱,羊0.5元钱呢?那就无解。

刁番图分析是数论的一大分支,其实际应用范围极广。有一个著名的刁番图问题,以费马最后定理而著称:设有方程xn+yn=zn,其中n是大于2的正整数,问此方程是否有整数解(如果n=2,则称此为毕达格拉斯三元数组,具有自32+42=52起始的无穷多组解)?这是一个最著名的数论问题,已经由英国数学家安德鲁。威尔斯解决,他用于解决此问题的方法可以说是大大出乎人们的意料,他应用了一种叫做椭圆函数的理论,实际上,他证明的并不是方程本身,而是在椭圆函数领域中另一个著名的猜想:谷山-志村猜想。由于椭圆函数的模形式与费马最后定理同构,所以,等于是从侧面攻破了这个300多年的大难题。

二年级数学手抄报内容二:打电话的数学

每次当你拿起电话听筒打电话,发传真,或发调制解调器信息时,你就进人了非常复杂的巨大网络。覆盖全球的通信网是惊人的。很难想像每天有多少次电话在这网络上打来打去。一个系统被不同国家和水域的不同系统“分割”,它是如何运行的呢?一次电话是如何通向在你的城市、你的国家或另一国家中的某个人的呢?

在早期电话史上,打电话的人拿起电话听筒,摇动曲柄,与接线员联系。一位本地接线员的声音从本地交换台来到线上,说“请报号码”,然后他把你同你试图通话的对方连接起来。如今,这一过程由于有了各种不同的转换和送达通话的方法而如雨后春笋般地迅速发展。包含着线性规划的各种复杂类型,以及有关的二进制和二进编码的数学,已脱离了潜在的不稳固地位而成为有意义的东西。

你的声音是如何行进的?你的声音产生声波,在听筒中转换成电信号。今天,这些电脉冲可以用许多不同的方法传递和转换。它们可以变成激光信号,然后沿光纤电缆传递;它们可以转换成无线电信号,然后利用无线电或微波线路在一个国家内从一座塔传送到另一座塔;或者它们可以仍旧作为电信号沿着电话线传送。在美国,大部分电话都是由自动交换系统接通的。现在电子交换系统是最快的。这系统有一个程序,这程序包含电话运行的所有方面所需的信息,并且时刻在了解哪些电话正在使用,哪些通道是可用的。通话可以由不同频率的电流传送,或转换成数字信号。这两种方法都使多重通话可以沿同一些电线传送。最新式的系统把通话转换成数字信号,然后再用二进制数列编码。于是各个通话可以沿着线路以特定的次序“同时’’行进,直到它们被译码而到达各自的目的地。

打电话时,电话系统选择最佳通话途径,并发出一连串指令,以接通线路。整个过程只需几分之一秒。通话线路最好是直接通向对方的──从节省距离和时间的观点看来,这是人们所期望的。但是如果直接线路正在为别的通话服务,新的通话就必须沿其他线路中最好的一条进行。这正是需要用到线性规划的地方。我们把电话线路问题当作一个有几百万个面的复杂几何立体形来看。每个顶点代表一个可能的解。问题是要找出最优解,而不必计算每一个解。1947年。数学家乔治B.丹齐克研究出了求解复杂线性规射问题的单纯形法。单纯形法实质上是沿着那立体的棱进行,依次检查每一隅角,并总是向着最优解前进。当可能解的数目不超过15000~20000时,这方法能有效地求得解答。1984年,数学家纳伦德拉.卡马卡发现一种方法,它使求解很麻烦的线性规划问题例如长距离电话最优通话线路问题所需的时间大为缩短。卡马卡算法采取了一条通过那立体内部的捷径。在选择了一个任意内点之后,这算法使整个结构变形.以把问题改造得使所选择的点正好在那立体的中心。下一步是朝着最优解的方向找到一个新的点,再将结构变形,又使新点位于中心。必须进行变形,否则那些看来能给出最优改进的方向都是虚假的。这些重复的变换以射影几何的概念为基础,很快便能得到最优解。

今天,古老的电话敬语“请报号码”具有双重的意义。曾经是简单的拿起电话听筒打电话的过程,现在却要使一个依着数学的庞大而复杂的网络运作起来。

更多相关阅读

最新发布的文章