高等数学学习方法讨论

2017-05-13

从中学升入大学学习后,在学习方法上将会遇到一个比较大的转折。首先是对大学的教学方式和方法会感到很不适应,那么大学生应该如何学习好高数呢?下面是由小编整理的高等数学学习方法讨论,希望对您有用。

高等数学学习方法讨论篇一

相对于现阶段高等职业教育发展的综合性和终身性趋势来说,高等数学不仅仅是学生掌握数学工具学习其他相关专业课程的基础,更是培养学生逻辑思维严谨性的重要载体,高等数学的重要性是不言而喻的。因此高等数学的有效学习成了高数教师和同学们共同关注的一个重要问题。

通过平时与学生的交流和上课,学生的学习困难一般集中在认为教学内容太抽象听不懂、不会做题,数学概念太抽象,不易理解(如极限、无穷小等)。学生对于接受高等数学的思想、原理、方法非常不适应,对于如何学好高等数学,如何理解它的思想、方法茫然无知。下面我们大家一起讨论一下高数学不好的原因。

首先,对大多数高中生而言,考取大学是最具诱惑力的行为归因,但进人大学后,这一因素就不复存在了,大一新生基本上处于如释重负的解脱状态,缺乏主动进取的精神,学习目标不明确,学习动机不强烈。有些同学则认为学高等数学对将来的工作也没有多大用处,有些同学本来数学的基础就不好,进人大学后一接触高等数学,发现难以与中学数学知识直接衔接,学习高等数学的兴趣荡然无存,对高等数学的学习消极应付。

再次,学生在高中阶段已形成一定的思维方式及学习习惯,解数学题基本上采取模式辨认、方法回忆的思维方式,对解题方法和技巧模仿、记忆、套用,对知识不求甚解,并未真正理解和内化,没有进行数学思考的意识,也没有掌握数学思考的方法。大学课堂上,对高等数学各部分内容的理解支离破碎,自学能力差,缺乏独立思考的意识,没有反思学习过程的习惯,更没有总结、归纳知识和思想方法的习惯,对教师有较强的依赖心理,学生已形成的思维方式及学习习惯直接影响学生接受高等数学。

最后,大学与高中的教学都以讲授法为主,但受高考的影响和制约,高中教师对知识的讲授详细,题型、方法归纳完整,较多的精力用于通过大题量的训练来培养学生的技能技巧,并及时进行辅导和巩固;而大学的教学由于知识点较多,课时有限,课容量大,教师更注重思想方法的深刻理解,和数学思想的培养。

对于上述几个原因建议大家从以下几方面入手:

第一、调整好自己的心态,尽快适应大学生活,对自己有一个准确的定位。

第二、向大二的师哥师姐请教他们高数学习的一些窍门和技巧,再自己通过一段时间的高等数

学的学习,根据高数课的特点和自己的学习习惯,尽快总结出适合自己的学习方法。

第三、高数的学习是一个日积月累的过程,不是几天或一段时间的突击成绩就可以上来的。只要你把平时的多努力,那么你的付出一定会有所得。

高等数学学习方法讨论篇二

1,逐步树立信心。 高数(工专)对以前的基础要求很少,三角公式在教材里就可查到。所以,像我一样,从“0”开始,一样可以过高数。

2,迈出重要的、关键的、决定性的第一步。 多花些时间,着重先学透前三章,选做一些练习;第三章的“导数”,是后继内容“微分”、“积分”、“二重积分”的基础,也可以举一反三。学完了“导数”,自己能计算题目了,就会信心倍增。

3, 紧扣大纲,但又要区分主次;可先适当跳过应用难题和难点。 学习每一章之前,都要先看大纲;我分别用4种符号,在教材的各节中标记出大纲的4种要求,这样就一目了然。另外,有些大纲的要求是“简单应用”、“综合应 用”,比如“二次方程”等,但以往的试卷中并没有出题,可以缩减学习时间。我始终都没仔细学“微分学应用”这一章(注意会出题目),这样可以节省时间和精 力。 4,把“例题”,当成“习题”,自己先做一遍,可以事半功倍。因为当你看到例题时,已经看过了相关的教材内容。有的人看书确实很认真,但不重视通过做习题来逆向检验和加深记忆,考试效果比较差。

看了教材,会做题目了,这样还不行; 像“导数”、“积分”这些最基本、也是最重要的章节,要能够非常熟练的解题;所以,只有通过大量的习题,才能达到熟练的程序。往后学习才会觉得更容易,更有感觉。

5,通过以往试卷真题的练习,是复习和检验的重要环节。 高数需要多些时间,不能像有些公共政治课程一样临时抱佛脚。

高等数学学习方法讨论篇三

由于《高等数学》自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法、分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,锲而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,谈一点学习《高等数学》的方法,供参考。

第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。

第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。

第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。《高等数学》归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小

节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。

第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。

第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。

第六,掌握学习规律

1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟考研有关的,这样也有利于你做好将来的考研准备。

2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。

3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。

4.学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。基本网络就是上面说的笔记上的总结的知识提纲,也要重视。基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的,比如各种极限的求法。

这些都做到了,高等数学应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此,并不象你想象的那么难。还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道高等数学真的很有用。

总之,大学学习是人生中最后一个系统学习的过程。它不仅要传授给我们一个比较完整的专业知识,还要培养学生走向社会的工作能力和社会知识。就高等数学课程而言,这就要培养我们学生的观察判断能力,逻辑思维能力,自学能力以及动手解题能力,而这几种能力结合起来,就可以构成独立分析问题的能力和解决问题的能力。在此,期望大家高度重视高等数学的学习,探索出一套对自己行之有效的学习方法

更多相关阅读

最新发布的文章