高考数学复习平面与平面的位置关系知识点
高考中,数学常会考到平面的相关知识点,因此在复习时就需要掌握其知识点,下面是小编给大家带来的高考数学复习平面与平面的位置关系知识点,希望对你有帮助。
高考数学平面与平面的位置关系知识点
两个平面的位置关系:
(1)两个平面互相平行的定义:空间两平面没有公共点
(2)两个平面的位置关系:
两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交
二面角
(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]
(3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.两平面垂直
两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥
两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直
两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
Attention:
二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)
高考数学平面与平面的位置关系相关练习
1.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,
则平面ABP与平面CDP所成的二面角的度数是( )
A.30°
B.45°
C.60°
D.90°
2.线段AB的两端在直二面角CD的两个面内,并与这两个面
都成30°角,则异面直线AB与CD所成的角是( )
A.30°
B.45°
C.60°
D.75°
3.
在直二面角AB棱AB上取一点P,过P分别在,平面内作
与棱成45°角的斜线PC、PD,则∠CPD的大小是( )
A.45°
B.60°
C.120°
D.60°或120°
4.设△ABC内接于⊙O,其中AB为⊙O的直径,PA⊥平面ABC。 如图cosABC,PA:PB4:3,求直线PB和平面PAC所成角的大小。