黑洞是怎样形成的 黑洞演化过程
黑洞是时空曲率大到光都无法从其视界逃脱的天体,导致黑洞形成需要哪些因素呢?以下是由小编整理关于黑洞是怎样形成的内容,希望大家喜欢!
黑洞的形成
形成过程
跟白矮星和中子星一样,黑洞也是由恒星演化而来的。
当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。
质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。根据科学家的猜想物质将不可阻挡地向着中心点进军,直至成为一个体积趋于零、密度趋向无限大的“点”。而当它的半径一旦收缩到一定程度(史瓦西半径),巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。
形成理论
任何两个物体之间都存在这种吸引作用。物体之间的这种吸引作用普遍存在于宇宙万物之间,称为万有引力。宇宙星体所产生的引力场(和星体的质量及密度有关)越大,从其表面逃逸所需的极限速度就越大。如果这个引力场大到某个极限,使以光速运动的物体也不能挣脱它的束缚而逃逸,那么人们将无法观察到这个星体,仅能感受到它的引力效应。巨大黑洞质量可能是太阳的几十万、几百万或几千万倍 。由于他质量无穷大,使得其他物体能脱离他的速度也需要很大。这个逃逸速度如果超过了光速,光也会被吸纳。所以,光逃离不了。人们也就看不到黑洞。
黑洞的概述
黑洞是一个空间——时间区域,它的最外围是光所能从黑洞向外到达的最远距离,这个边界称为“事件视界”。它如同一个单向的膜,只允许物质穿过视界并落到黑洞里去,但没有任何物质能够从里面出来。
“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出。实际上黑洞真正是“隐形”的。
黑洞的演化过程
黑洞就是中心的一个密度无限大、时空曲率无限高、体积无限小的奇点和周围一部分空空如也的天区,这个天区范围之内不可见。依据阿尔伯特-爱因斯坦的相对论,当一颗垂死恒星崩溃,它将聚集成一点,这里将成为黑洞,吞噬邻近宇宙区域的所有光线和任何物质。
黑洞的产生过程类似于中子星的产生过程;某一个恒星在准备灭亡,核心在自身重力的作用下迅速地收缩,塌陷,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高质量而产生的力量,使得任何靠近它的物体都会被它吸进去。黑洞开始吞噬恒星的外壳,但黑洞并不能吞噬如此多的物质,黑洞会释放一部分物质,射出两道纯能量——γ射线。
也可以简单理解:通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生聚变。由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。由于聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素,接着,氦原子也参与聚变,改变结构,生成锂元素。如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成,直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定,参与聚变时不释放能量,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。说它“黑”,是因为它的密度无穷大,从而产生的引力使得它周围的光都无法逃逸。跟中子星一样,黑洞也是由质量大于太阳质量好几倍以上的恒星演化而来的。
当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,物质将不可阻挡地向着中心点进军,直到最后形成体积接近无限小、密度几乎无限大的星体。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”就诞生了。
吸积
黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。
通常天体物理学家会用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的。当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。黑洞除了吸积物质之外,还通过霍金蒸发过程向外辐射粒子。
蒸发
由于黑洞的密度极大,根据公式我们可以知道密度=质量/体积,为了让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,它的质量极大,体积极小。但黑洞也有灭亡的那天,按照霍金的理论,在量子物理中,有一种名为“隧道效应”的现象,即一个粒子的场强分布虽然尽可能让能量低的地方较强,但即使在能量相当高的地方,场强仍会有分布,对于黑洞的边界来说,这就是一堵能量相当高的势垒,但是粒子仍有可能出去。
霍金还证明,每个黑洞都有一定的温度,而且温度的高低与黑洞的质量成反比例。也就是说,大黑洞温度低,蒸发也微弱;小黑洞的温度高蒸发也强烈,类似剧烈的爆发。相当于一个太阳质量的黑洞,大约要1后面66个0年才能蒸发殆尽;相当于一颗小行星质量的黑洞会在1小数点后面21个0加1012秒内蒸发得干干净净。
毁灭
黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史蒂芬·霍金于1974年做此预言时,整个科学界为之震动。霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论,他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量。
假设一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入黑洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生,我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。
当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。