高考数学选择题解题方法汇总
高考数学选择题在结构上具有自己的特点,解答题目时有方法可循,下面是小编给大家带来的高考数学选择题解题方法,希望对你有帮助。
高考数学选择题解题方法
1.特值检验法
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为
A.-5/4B.-4/5C.4/5D.2√5/5
解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
例:256-1可能被120和130之间的两个数所整除,这两个数是:
A.123,125
B.125,127
C.127,129
D.125,127
解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C。
10.估值选择法
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考数学选择题答题技巧
1. 直接法
就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。
2. 特例法
就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好。
3. 图解法
就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几何性质分析,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。
高考数学学习方法总结
1.激励信心
通过揭示数学问题以及解题的本质,把数学问题趣味化、基础化、生活化,把数学思维方法合情化、自然化、人文化,从心理上亲近数学,消除对数学的恐惧心理,找回自信,同时要增强毅力。
2.夯实基础
针对教学大纲和考试说明,采用低起点、拉网式、递进的方法,牢固掌握基础问题。对于容易犯的错误,要做好错题笔记,分析错误原因,找到纠正的办法;不能盲目做题,必须在搞清楚概念的基础上做才是有效的。对于课本中的典型问题,要深刻理解,并学会解题后反思题意、方法、变化。这样不仅能够深刻理解这个问题,还有利于扩大解题收益,跳出题海!
3.训练方法
在注重基础的同时,要将高中数学合理分类。一方面按知识进行条块分类,进行知识的归纳与整理,形成全局观念。另一方面,以方法为主线,形成专题,提升解题策略,从而解一题会一类。