六年级数学上册第四单元手抄报
数学是一门强调方法的基础学科,有效运用数学学习策略是提高学习质量与效率的重要途径,策略意识与策略情感则是影响策略水平发展的重要因素。大家了解数学的多样性吗?小编给大家带来数学手抄报相关内容,希望能够幫助你们:
六年级数学上册第四单元手抄报:数学家的故事
六年级数学上册第四单元手抄报:沈括
沈括 在我国北宋时代,有一位非常博学多才、成就显著的科学家,他就是沈括──我国历史上最卓越的科学家之一。他精通天文、数学、物理学、化学、生物学、地理学、农学和医学;他还是卓越的工程师、出色的军事家、外交家和政治家;同时,他博学善文,对方志律历、音乐、医药、卜算等无所不精。他晚年所著的《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。《梦溪笔谈》不仅是我国古代的学术宝库,而且在世界文化史上也有重要的地位。《梦溪笔谈》是中国科学史上的坐标,是沈括一生社会和科学活动的总结,内容极为丰富,包括天文、历法、数学、物理、化学、生物、地理、地质、医学、文学、史学、考古、音乐、艺术等共600余条。其中200来条属于科学技术方面,记载了他的许多发明、发现和真知灼见。
沈括在数学方面也有精湛的研究。他从实际计算需要出发,创立了“隙积术”和“会圆术”。沈括通过对酒店里堆起来的酒坛和垒起来的棋子等有空隙的堆体积的研究,提出了求它们的总数的正确方法,这就是“隙积术”,也就是二阶等差级数的求和方法。沈括的研究,发展了自《九章算术》以来的等差级数问题,在我国古代数学史上开辟了高阶等差级数研究的方向。此外,沈括还从计算田亩出发,考察了圆弓形中弧、弦和矢之间的关系,提出了我国数学史上第一个由弦和矢的长度求弧长的比较简单实用的近似公式,这就是“会圆术”。这一方法的创立,不仅促进了平面几何学的发展,而且在天文计算中也起了重要的作用,并为我国球面三角学的发展作出了重要贡献。
关于数学的手抄报图片
六年级数学上册第四单元手抄报:秦九韶
秦九韶(约公元1202年至1261年)系南宋普州(安岳)人,字道古,四川安岳人。父季据,进士出身,曾任工部侍郎、秘书省秘书少监。秦九韶自己曾任和州(今安徽和县)、琼州(今海南琼县)、薪州(今湖北薪春)、建康(今江苏南京)通判。1261年左右被贬至梅州(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。
秦氏成才之路有三:其一是因为他父亲长期从政,他自己也出任地方行政官吏,在行政管理工作中,广泛接触工程技术、农田水利、海运交通、钱粮经济、商品交易、军事后勤等工作,为他著作《数书九章》采集素材提供有利条件。其二,据《数书九章》秦氏自序说:“早岁侍亲中都,因得访习于太史。”这当是在他父亲任秘书少监职时事,秦九韶向制订历法官员学习造历知识。其三,《数书九章》秦氏自序还说:“尝从隐君子受数学”,隐君子是谁,未详姓名,很可能是一位学识渊博的学者,所以秦九韶在数学上的创造发明、其来有自:家学渊源、本人工作实践,刻苦钻研以及良师益友间互相切磋质疑问难。
1247年(淳佑七年)著成《数书九章》,全书18卷,81题,分为九大类:大衍类、天时类、田域类、测望类、赋役类、钱谷类、营建类、军旅类、市易类。这是一部划时代的巨着,它总结了前人在开方中所使用的列筹方法,将其整齐而有系统地应用到高次方程的有理或无理根的求解上去,其中对“大衍求一术”和“正负开方术”等有十分深入的研究。 “大衍求一术”和“正负开方术”比欧美国家早600年,代表中世纪数学发展的主流,并将中国古代数学推向了顶峰,是世界最伟大的数学家之一。
关于数学的手抄报图片
六年级数学上册第四单元手抄报:秦九韶著作的主要成就
1、完整保存了中国数码字计数法:自然数、分数、小数、负数都有专门论述
2、首创连环求等,求几个数的最小公倍数
3、更进一步认识比例,比例项数达到5项之多,层层变换。有条不紊
4、一次同余式组的程序化解法,创大衍求一术
5、三斜求积公式,使“海伦公式”不专美于前
6、线性方程组的直除法(即加减消元法),将系数矩阵化为单位矩阵
7、用正负开方术数值解多项式
13世纪时秦九韶在一次同余论方面的创造发明是有划时代意义的。印度数学先驱阿耶波多.(Aryabhata,476—550年)在其《文集》第2章第32、33节对同余式③的解法有过议论,但仅有四句押韵诗传世,自称为库塔卡术(Kuttaka,义:碾细),含义隐晦,经后人一再补充注释,人们才理解其用意。秦氏所作有系统论述,如上述第①③项成果就胜于印度。和算(日本古典数学)向以中算为师。秦九韶的各项成果日本直至关孝和(1642?一1708年)所著《括要算法》(1683年)中才有所著述。西欧在一次同余理论上之有与秦九韶同等水平,是由欧拉、拉格朗日与高斯三代人,三大师前后历经18至19世纪的60多年探索才达到的,特别是高斯24岁年华时(1801年)发表名著《算术研究》,其中第l、2两章才全面论述一次同余理论。