经济数学发展历史心得体会3篇

2017-01-15

经济数学是高等数学的一类,分为微积分、线性代数、概率论与数理统计。下面是为大家准备的经济数学发展历史心得体会,希望大家喜欢!

经济数学发展历史心得体会范文1

在《经济数学发展历史》中杨教授将经济数学的发展历史与各历史人物对经济数学的贡献作了概貌的叙述,对我了解经济数学有很大的帮助,总结如下:

经济学包含微分、积分、概率、统计及线性代数。其中微分要对函数要有一定了解,熟悉一些基本概念,了解变量之间的关系,了解函数的基本属性,才能更清楚地了解函数属性。积分是微分的逆过程,分不定积分与定积分,积分的基本公式很重要,是进行积分运算的基础,若不能灵活运用则无法进行积分运算。概率是事件发生的几率,统计是对事件发生几率找出规律来描述,预估总体由样本进行,分布状况从统计结果得来,概率与统计的基本概念有平均值/标准差。线性代数是通过行列式进行计算的,要了解行列式的概念与化简方法,会计算行列式的值。若不是之前我对经济数学有一定的了解,这个课程听起来会很困难,因其中的公式与计算方法若不能理解则会有听不下去的感觉。借助之前的一些基础,虽然有部分内容听得似懂非懂,但经过查阅和反复听课,还是弄明白了不少知识,只有理解了才能有更深入地认识,这与杨教授在剖析这门课程的时候深入浅出是分不开的。

经济数学发展历史心得体会范文2

听了杨立洪教授的《经济数学发展历史》,对经济数学的发展及内容有了更深入的理解。经济数学是数学的一个分支,包括微积分、线性代数与概率统计,杨立洪教授将初等数学比作树根,微积分比作树干,各种名目繁多的数学分支比作树枝,意味着各种数学分支都离不开经济数学的支撑,说明经济数学对科技的发展有非常大的帮助与贡献。

在经济学的三大块:微积分、线性代数和概率统计中,我的理解是,微分是将复杂的问题简单化,一条曲线中的一个点用切线来表示,这条曲线是由无数个切点组成,就将复杂的曲线简单化了,积分就是将点扩到线,从线扩到面,使曲面的面积是可以计算的,微积分的合用就可以解决非线性相关的问题,在我们现实生活中,非线性是远远多于线性的,经过微积分的转换与运算,让非线性的问题解决变得可能。线性代数是在解决如何简化和求解线性方程,可以通过计算得出简单的结果,概率统计是在描述一些机率的发生可以被概括,看似随机的事件多交发生后,其结果是有规律并且可以描述的,与很多杰出的历史先祖对经济数学发展作出的巨大贡献分不开。

通过学生经济数学的发展历史,可以了解到经济数学的意义与用途,为进一步学习打基础。

经济数学发展历史心得体会范文3

经过一年的经济数学的学习,我不仅知识方面得到了提高,思维方面也得到了升华。我认为经济数学有以下几个显著特点:

1)识记的知识相对减少,理解的知识点相对增加。

2)不仅要求会运用所学的知识解题,还要明白其来龙去。

3)联系实际多,对专业学习帮助大。

4)教师授课速度快,课下复习与预习必不可少。

在大学之前的学习,都是老师在黑板上写满各种公式,然后像背单词一样,把一堆公式死记硬背下来。哪种类型的题目用哪个公式,老师都已经总结出来,我只要对号入座,就能把问题解出来。但现在,我只需要记住一些定义、定理和推论。而老师也不会给出固定的解题套路。因为经济数学与中学数学不同,它更要求理解。只要充分理解了每个知识点,遇到题目就能自己分析出正确的解题思路。所以,学习经济数学,记忆的负担轻了,但对思维的要求却提高了。每一次微积分课程,都是一次大脑的思维训练,都是一次提升理解力的好机会。 我们学习经济数学不能只停留在以解出答案为目标,而是应该知道每一步解题的依据。正如前面提到的,中学时期学过的许多定理并不要求我们理解其结论的推导过程。而经济数学课本中的每一个定理都有详细的证明。最初,我以为只要把定理内容记住,能做题就行了。渐渐地,我发现如果没有真正摸透每个定理,就不能自如地运用它。于是,我开始认真地学习每一个定理的推导。有时候,有些地方很难理解,我就反复思考,或请教老师、同学。这个过程虽不轻松但却很值得。因为只有通过自己不断地探索,才能更好地掌握这些知识。

总而言之,经济数学的以上几个特点,使我的数学学习历程充满了艰难,同时也给了我难得的锻炼机会,让我收获颇多。

进入大学之前,我们都在学习基础的数学知识,联系实际的东西并不多。在大学不同专业的学生学习的数学是不同的。因此,经济数学的课本上有了更多联系实际的内容,这对专业学习的帮助是很大的。比如“常用简单经济函数介绍”中所列举的需求函数、供给函数、生产函数等等在西方经济学的学习中都有用到。而“极值原理在经济管理和经济分析中的应用”这一节与经济学中的“边际问题”密切相关。如果没有这些知识作为基础,经济学中的许多问题都无法解决。

当我亲身学习了经济数学,并试图把它运用到经济问题的分析中时,才真正体会到了数学方法是经济学中最重要的方法之一,是经济理论取得突破性发展的重要工具。这也坚定了我努力学好经济数学的决心虽然我的数学很差劲,但是在未来学习经济数学的路途上会不断努力的!

虽然说经济数学在我们的实际生活中,并没有什么实际的用途,但是通过学习经济数学,我们的思想逐渐成熟,经济数学对我们以后的学习奠定了基础,所以说,在今后的学习中,可以充分的运用经济数学知识,不断地完善自己。

更多相关阅读

最新发布的文章