电力电子技术论文范文

2017-06-17

电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。小编为大家整理的电力电子技术论文范文,希望你们喜欢。

电力电子技术论文范文篇一

浅议电力电子技术

摘要:电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。

关键词:电力;电子技术;电力电子

电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。现已成为现代电气工程与自动化专业不可缺少的一部分。

一、电力电子学

电力电子学(Power Electronics)这一名称是在上世纪60年代出现的。1974年,美国的W.Newell用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、电子学和控制理论三个学科交叉而形成的。这一观点被全世界普遍接受。“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。

利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳辐射能转换成电能。与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。因此人们关注的是所能转换的电功率。

电力电子技术是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统中大量应用。

二、电力电子技术的应用作用

1、优化电能使用。通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%,我国已将许多装置列入节能的推广应用项目。

2、改造传统产业和发展机电一体化等新兴产业。据发达国家预测,今后将有95%的电能要经电力电子技术处理后再使用,即工业和民用的各种机电设备中,有95%与电力电子产业有关,特别是,电力电子技术是弱电控制强电的媒体,是机电设备与计算机之间的重要接口,它为传统产业和新兴产业采用微电子技术创造了条件,成为发挥计算机作用的保证和基础。

3、电力电子技术高频化和变频技术的发展,将使机电设备突破工频传统,向高频化方向发展。实现最佳工作效率,将使机电设备的体积减小几倍、几十倍,响应速度达到高速化,并能适应任何基准信号,实现无噪音且具有全新的功能和用途。

4、电力电子智能化的进展,在一定程度上将信息处理与功率处理合一,使微电子技术与电力电子技术一体化,其发展有可能引起电子技术的重大改革。有人甚至提出,电子学的下一项革命将发生在以工业设备和电网为对象的电子技术应用领域,电力电子技术将把人们带到第二次电子革命的边缘。

三、电力电子技术器件

02年出现了第一个玻璃的汞弧整流器。1910年出现了铁壳汞弧整流器。用汞弧整流器代替机械式开关和换流器,这是电力电子技术的发端。1920年试制出氧化铜整流器,1923年出现了硒整流器。30年代,这些整流器开始大量用于电力整流装置中。20世纪40年代末出现了晶体管。20世纪50年代初,晶体管向大功率化发展,同时用半导体单晶材料制成的大功率二极管也得到发展。1954年,瑞典通用电机公司(ASEA公司)首先将汞弧管用于高压整流和逆变,并在±100千伏直流输电线路上应用,传输20兆瓦的电力。1956年,美国人J.莫尔制成晶闸管雏型。1957年,美国人R.A.约克制成实用的晶闸管。50年代末晶闸管被用于电力电子装置,60年代以来得到迅速推广,并开发出一系列派生器件,拓展了电力电子技术的应用领域。 电力电子电路 随着晶闸管应用的推广,开发出许多电力电子电路。

四、电力电子电路器件类别

1、将交流电能转换成直流电能的整流电路;

2、将直流电能转换成交流电能的逆变电路;

3、将一种形式的交流电能转换成另一种形式的交流电能的交流变换电路;

4、将一种形式的直流电能转换成另一种形式的直流电能的直流变换电路。这些电路都包含晶闸管,而每个晶闸管都需要相应的触发器。于是配合这些电力电子电路出现了许多的触发控制电路。

五、电子电路器件分类

1、控制电路主要由分立的电子元件(如晶体管、二极管)组成。直到80年代后期,还用得不少。

2、由集成电路组成。自从1958年美国出现了世界上第一个集成电路以来,发展异常迅速。它应用到电力电子装置的控制电路中,使其结构紧凑,功能和可靠性得到提高。

3、由微机进行控制。

70年代以来,由于微机的发展使电力电子装置进一步朝实现智能化的方向进步。 电力电子装置 随着电力电子电路的发展和完善,由晶闸管组成的许多类型的电力电子装置不断出现。如大功率的电解电源、焊接电源、电镀用的直流电源;直流和交流牵引、直流传动、交流串级调速、变频调速等传动用电源;励磁、无功静止补偿、谐波补偿等电力系统用的电力电子装置;低频、中频、高频电源等各种非工频电源,尤其是感应加热的中高频电源;不停电电源、交流稳压电源等各种工业用电力电子电源;各种调压器等等。这些电力电子装置,与传统的电动机-发电机组比,有较高的电效率(以容量10千瓦至数百千瓦、频率为1000赫的电动机-发电机组为例,在额定负载下,效率η=80%,并随负载减小而显著降低,若用晶闸管电源,η≥92%,且随负载变化不大),因此,有明显的节能效果。电力电子装置是静止式装置,占地面积小,重量轻,安装方便(以焊接电源为例,与旋转焊机相比,重量减轻80%,节能15%)。同时,电力电子装置往往对频率、电压等的调节比较容易,响应快,功能多,自动化程度高,因此用于工业上不但明显节能,还往往能提高生产率和产品质量,节省原材料,并常能改善工作环境。但电力电子装置大多为电子开关式装置,它往往对电网和负载产生谐波干扰,有时还对周围环境引起一定的高频干扰,这是在设计这些装置和系统时必须妥善解决的。

电力电子技术论文范文篇二

电力电子技术的应用

【摘 要】本文简单阐述了电力电子技术的发展,主要介绍了电力电子技术在电力系统、汽车工业、光伏发电领域等方面的应用。

【关键词】电力电子技术;应用

0.引言

电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。经过50年的发展历程, 电力电子技术已迅速发展成为一门独立的技术、学科领域。它的应用领域几乎涉及到国民经济的每个工业。尤其是进入21世纪,随着新的理论、器件、技术的不断涌现,特别是与微电子技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,它将成为新世纪的关键支撑技术之一。电力电子技术拥有许多微电子技术所具有的特征,比如发展迅速、渗透力强、生命力旺盛,并且能与其它学科相互融合和相互发展。

1.电力电子技术在电力系统中的应用

自20世纪80年代,柔性交流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。已有不少文献介绍和总结了相关设备的基本原理和应用现状。以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。

1.1在发电环节中的应用

电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。

变速恒频励磁广泛应用于水力、风力发电机。在水力和风力发电过程中,为了获得最大有效功率,使水力和风力发电机组变速运行,主要通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。

发电厂风机水泵的变频调速。风机水泵耗电量约占火电设备总耗电量的65%,且运行效率较低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有许多的生产厂家,无完整的系列产品,但具备高压大容量变频器设计和生产能力的企业较少,目前,国内不少院校和企业正在抓紧时间搞联合研发。

1.2在输电环节的应用

电力电子元器件应用于高压输电系统被称为“硅片引起的第二次革命”,大幅度改善了电力网的稳定运行特性。在输电环节中应用的技术主要有直流输电(HVDC)和轻犁直流输电(HVDC Light)技术以及柔性交流输电(FACTS)技术,其中柔性交流输电技术应用尤为重要。

FACTS技术的概念问世于20世纪80年代,它是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,从而大幅度提高电力系统的稳定水平。 近年来柔性交流输电技术在世界上发展迅速,并将FACTS技术用于实际电力系统工程。

1.3在配电环节中的应用

配电系统亟待需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制不仅要满足对电压、频率、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即为用户电力技术或称DFACTS技术,是在FACTS各项成熟技术的基础上发展起来的电能质量控制新技术。可以将DFACTS设备理解为FACTS设备的压缩版,其原理、结构均相同,功能也相似。潜在需求量大,市场介入较容易,研发投入和生产成本较低,随着电力电子元器件价格不断降低,可预期DFACTS设备产品将进入快速发展期。

1.4在节能环节的运用

1.4.1变负荷电动机调速运行

要想使电动机节电较完善,必须将本身挖掘节电潜力节电和通过变负荷电动机的调速技术节电二者结合起来。目前,交流调速主要广泛应用于冶金、矿山等部门及社会生活中,如:风机、泵类等变负荷机械中采用调速控制代替挡风板或节流阀控制风流量和水流量具有显著的效果。国外变负荷的风机、水泵大多采用了交流调速,我国正在推广应用中。

1.4.2减少无功损耗,提高功率因数

在电气设备中,变压器和交流异步电动机等都属于感性负载,这些设备在运行时不仅消耗有功功率,而且还消耗无功功率。因此,无功电源与有功电源一样,是保证电能质量不可缺少的主要部分。在电力系统中应保持无功平衡,否则,将会使系统电压降低 ,设备损坏,功率因数减少,严重时将引起电压崩溃,系统解裂,造成大面积停电事故。所以,当电力网或电气设备无功容量不足时,应增加无功补偿设备,以提高设备功率因数。

2.电力电子技术在汽车工业中的应用

作为汽车用电源,在原来14V、28V基础上,现又增加了新的42V系列,且还出现了混合动力源电动车(HEV)等288V的驱动电压(典型值),形成了多种电源并存的局面。使用这些电源来实现汽车的各种功能,就必须利用所谓的电力电子技术。如:回波(echo)技术,藉能量管理或功率管理的最佳化,高可靠性,利用线控(x-by-wire)装置的电子控制系统等都是非常需要的。这些电力电子装置与原来的装置比较,由于电力电子技术导致了“响应性好”、“软控制的灵活性”、“小型轻量化的操控”、“高的效率”等一系列优越的性能,尤其是从各类照明、指示灯、雨刷(刮水器)、电动窗等1kW以下的轻负载到数十kW功率级的电力驱动,功率都不断增大。利用电动机、逆变器或交流变换器等电力电子装置的性能,大幅度提升了汽车的动力性能。

在汽车工业的应用主要有:利用电子开关替代传统的机械开关以及继电器;无触点点火、燃油电子喷射;电子动力转向、电子自动变速器;对原有的直流电源系统进行改造;对水泵、动力转向、悬架等进行电子监控。

3.电力电子技术在光伏发电中的应用

光伏发电技术是可再生的新能源重要组成部分,可以用于任何需要电源的场合,上至航天器,下至家用电器,大到兆瓦级电站,小到玩具。光伏电源无处不在。到2040年可再生能源将占光能耗得50%以上,太阳能光伏发电将占总电力的20%以上。到21世纪末,可再生能源在能源结构中将占80%以上,太阳能发电将占到60%以上。这些数据说明光伏发电产业的发展前景及其在能源领域的重要战略地位。光伏发电系统是由太阳能电池方阵,储存电能的蓄电池,充放电控制器、逆变器、并网控制、无功补偿,电控柜,太阳跟踪控制系统等设备组成。其中除了太阳能电池,其它部分都需要电力电子技术支持。

4.结束语

总而言之,电力电子技术是智力、信息、知识密集型技术,也是我国经济与社会可持续发展项目之一,对促进国民经济发展,特别是电子工业发展将具有一定价值。

【参考文献】

[1]王宝卿.电子技术在电力系统中的应用.中国科技博览,2009,(31).

[2]俞勇祥.电力电子技术的应用概况.新技术新工艺,2000,(10).

[3]黄俊,王兆安,杨君.电力电子技术.机械工业出版社,2008.

[4]何平.简述电力电子技术在新能源建设中的应用.中国电力电子产业发展高峰论坛.论文集.

更多相关阅读

最新发布的文章